These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 15228347)
1. Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Chen SJ; Chang HT Anal Chem; 2004 Jul; 76(13):3727-34. PubMed ID: 15228347 [TBL] [Abstract][Full Text] [Related]
2. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Huang YF; Chang HT Anal Chem; 2006 Mar; 78(5):1485-93. PubMed ID: 16503598 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence and interactions with thiol compounds of Nile Red-adsorbed gold nanoparticles. Lee KH; Chen SJ; Jeng JY; Cheng YC; Shiea JT; Chang HT J Colloid Interface Sci; 2007 Mar; 307(2):340-8. PubMed ID: 17207807 [TBL] [Abstract][Full Text] [Related]
4. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Li L; Li B Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202 [TBL] [Abstract][Full Text] [Related]
5. Using nile red-adsorbed gold nanoparticles to locate glutathione within erythrocytes. Tseng WL; Lee KH; Chang HT Langmuir; 2005 Nov; 21(23):10676-83. PubMed ID: 16262336 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric and ratiometric fluorescent chemosensor based on diketopyrrolopyrrole for selective detection of thiols: an experimental and theoretical study. Deng L; Wu W; Guo H; Zhao J; Ji S; Zhang X; Yuan X; Zhang C J Org Chem; 2011 Nov; 76(22):9294-304. PubMed ID: 22007952 [TBL] [Abstract][Full Text] [Related]
7. Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. Huang CC; Chang HT Anal Chem; 2006 Dec; 78(24):8332-8. PubMed ID: 17165824 [TBL] [Abstract][Full Text] [Related]
8. Specific postcolumn detection method for HPLC assay of homocysteine based on aggregation of fluorosurfactant-capped gold nanoparticles. Lu C; Zu Y; Yam VW Anal Chem; 2007 Jan; 79(2):666-72. PubMed ID: 17222035 [TBL] [Abstract][Full Text] [Related]
9. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols. Lu C; Zu Y; Yam VW J Chromatogr A; 2007 Sep; 1163(1-2):328-32. PubMed ID: 17689546 [TBL] [Abstract][Full Text] [Related]
10. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Huang CC; Huang YF; Cao Z; Tan W; Chang HT Anal Chem; 2005 Sep; 77(17):5735-41. PubMed ID: 16131089 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Agüí L; Peña-Farfal C; Yáñez-Sedeño P; Pingarrón JM Talanta; 2007 Dec; 74(3):412-20. PubMed ID: 18371657 [TBL] [Abstract][Full Text] [Related]
12. Resonance Rayleigh-scattering method for the determination of proteins with gold nanoparticle probe. Liu S; Yang Z; Liu Z; Kong L Anal Biochem; 2006 Jun; 353(1):108-16. PubMed ID: 16620749 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s. J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531 [TBL] [Abstract][Full Text] [Related]
15. Gold nanoparticle-based near-infrared fluorescent detection of biological thiols in human plasma. Shang L; Yin J; Li J; Jin L; Dong S Biosens Bioelectron; 2009 Oct; 25(2):269-74. PubMed ID: 19683912 [TBL] [Abstract][Full Text] [Related]
16. Quenching of molecular fluorescence on the surface of monolayer-protected gold nanoparticles investigated using place exchange equilibria. Nerambourg N; Werts MH; Charlot M; Blanchard-Desce M Langmuir; 2007 May; 23(10):5563-70. PubMed ID: 17397202 [TBL] [Abstract][Full Text] [Related]
17. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media. Rakshit S; Vasudevan S ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317 [TBL] [Abstract][Full Text] [Related]
18. Label-free colorimetric assay for biological thiols based on ssDNA/silver nanoparticle system by salt amplification. Chen Z; He Y; Luo S; Lin H; Chen Y; Sheng P; Li J; Chen B; Liu C; Cai Q Analyst; 2010 May; 135(5):1066-9. PubMed ID: 20405067 [TBL] [Abstract][Full Text] [Related]
19. New preparation method of gold nanoparticles on SiO2. Zanella R; Sandoval A; Santiago P; Basiuk VA; Saniger JM J Phys Chem B; 2006 May; 110(17):8559-65. PubMed ID: 16640406 [TBL] [Abstract][Full Text] [Related]
20. Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Su H; Fan H; Ai S; Wu N; Fan H; Bian P; Liu J Talanta; 2011 Sep; 85(3):1338-43. PubMed ID: 21807192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]