BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 15228351)

  • 1. An electrochemical pumping system for on-chip gradient generation.
    Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD
    Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures.
    Xie J; Miao Y; Shih J; Tai YC; Lee TD
    Anal Chem; 2005 Nov; 77(21):6947-53. PubMed ID: 16255594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence.
    Razunguzwa TT; Timperman AT
    Anal Chem; 2004 Mar; 76(5):1336-41. PubMed ID: 14987090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-line coupling of a microelectrode array equipped poly(dimethylsiloxane) microchip with an integrated graphite electrospray emitter for electrospray ionisation mass spectrometry.
    Liljegren G; Dahlin A; Zettersten C; Bergquist J; Nyholm L
    Lab Chip; 2005 Oct; 5(10):1008-16. PubMed ID: 16175254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic gradient formation for nanoflow chip LC.
    Brennen RA; Yin H; Killeen KP
    Anal Chem; 2007 Dec; 79(24):9302-9. PubMed ID: 17997523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled deposition of cells in sealed microfluidics using flow velocity boundaries.
    Lovchik RD; Bianco F; Matteoli M; Delamarche E
    Lab Chip; 2009 May; 9(10):1395-402. PubMed ID: 19417906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic chip for electrochemical conversions in drug metabolism studies.
    Odijk M; Baumann A; Lohmann W; van den Brink FT; Olthuis W; Karst U; van den Berg A
    Lab Chip; 2009 Jun; 9(12):1687-93. PubMed ID: 19495451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration.
    Westcott NP; Lamb BM; Yousaf MN
    Anal Chem; 2009 May; 81(9):3297-303. PubMed ID: 19354293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography.
    Sundararajan N; Kim D; Berlin AA
    Lab Chip; 2005 Mar; 5(3):350-4. PubMed ID: 15726212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.
    Nashida N; Satoh W; Fukuda J; Suzuki H
    Biosens Bioelectron; 2007 Jun; 22(12):3167-73. PubMed ID: 17383171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induced pressure pumping in polymer microchannels via field-effect flow control.
    Sniadecki NJ; Lee CS; Sivanesan P; DeVoe DL
    Anal Chem; 2004 Apr; 76(7):1942-7. PubMed ID: 15053655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing.
    Zheng S; Liu M; Tai YC
    Biomed Microdevices; 2008 Apr; 10(2):221-31. PubMed ID: 17876707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A polymer-based microfluidic device for immunosensing biochips.
    Soo Ko J; Yoon HC; Yang H; Pyo HB; Hyo Chung K; Jin Kim S; Tae Kim Y
    Lab Chip; 2003 May; 3(2):106-13. PubMed ID: 15100791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.