BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15228499)

  • 1. Early acute necrosis and delayed apoptosis induced by methyl mercury in murine peritoneal neutrophils.
    Kuo TC; Lin-Shiau SY
    Basic Clin Pharmacol Toxicol; 2004 Jun; 94(6):274-81. PubMed ID: 15228499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The involvement of microtubular disruption in methylmercury-induced apoptosis in neuronal and nonneuronal cell lines.
    Miura K; Koide N; Himeno S; Nakagawa I; Imura N
    Toxicol Appl Pharmacol; 1999 Nov; 160(3):279-88. PubMed ID: 10544062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells.
    Limke TL; Atchison WD
    Toxicol Appl Pharmacol; 2002 Jan; 178(1):52-61. PubMed ID: 11781080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylmercury induces alveolar macrophages apoptosis.
    Kuo TC
    Int J Toxicol; 2008; 27(3):257-63. PubMed ID: 18569166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methylmercury activates ASK1/JNK signaling pathways, leading to apoptosis due to both mitochondria- and endoplasmic reticulum (ER)-generated processes in myogenic cell lines.
    Usuki F; Fujita E; Sasagawa N
    Neurotoxicology; 2008 Jan; 29(1):22-30. PubMed ID: 17920127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction.
    Shenker BJ; Guo TL; Shapiro IM
    Environ Res; 1998 May; 77(2):149-59. PubMed ID: 9600808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolongation of human neutrophil survival by low-level mercury via inhibition of spontaneous apoptosis.
    Moisan E; Arbour S; Nguyen N; Hébert MJ; Girard D; Bernier J; Fournier M; Kouassi E
    J Toxicol Environ Health A; 2002 Jan; 65(2):183-203. PubMed ID: 11820505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of apoptosis in human T-cells by organomercuric compounds: a flow cytometric analysis.
    Shenker BJ; Datar S; Mansfield K; Shapiro IM
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):397-406. PubMed ID: 9144456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The magnitude of methylmercury-induced cytotoxicity and cell cycle arrest is p53-dependent.
    Gribble EJ; Hong SW; Faustman EM
    Birth Defects Res A Clin Mol Teratol; 2005 Jan; 73(1):29-38. PubMed ID: 15641097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of fluorescence for detecting MeHg-induced ROS in cell cultures.
    Kaur P; Schulz K; Heggland I; Aschner M; Syversen T
    Toxicol In Vitro; 2008 Aug; 22(5):1392-8. PubMed ID: 18343630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury.
    Yole M; Wickstrom M; Blakley B
    Toxicology; 2007 Feb; 231(1):40-57. PubMed ID: 17210217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms.
    Tarabová B; Kurejová M; Sulová Z; Drabová M; Lacinová L
    J Pharmacol Exp Ther; 2006 Apr; 317(1):418-27. PubMed ID: 16326920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation.
    Tamm C; Duckworth J; Hermanson O; Ceccatelli S
    J Neurochem; 2006 Apr; 97(1):69-78. PubMed ID: 16524380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification.
    Barry MA; Reynolds JE; Eastman A
    Cancer Res; 1993 May; 53(10 Suppl):2349-57. PubMed ID: 8387392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin.
    Zhang XD; Wu JJ; Gillespie S; Borrow J; Hersey P
    Clin Cancer Res; 2006 Feb; 12(4):1355-64. PubMed ID: 16489094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of induction of apoptosis by anthraquinone anticancer drugs aclarubicin and mitoxantrone in comparison with doxorubicin: relation to drug cytotoxicity and caspase-3 activation.
    Koceva-Chyła A; Jedrzejczak M; Skierski J; Kania K; Jóźwiak Z
    Apoptosis; 2005 Dec; 10(6):1497-514. PubMed ID: 16215684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of growth arrest and DNA damage-inducible genes Gadd45 and Gadd153 in primary rodent embryonic cells following exposure to methylmercury.
    Ou YC; Thompson SA; Kirchner SC; Kavanagh TJ; Faustman EM
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):31-8. PubMed ID: 9356304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical, ultrastructural and molecular characterization of the triphenyltin acetate (TPTA)-induced apoptosis in primary cultures of mouse thymocytes.
    Bollo E; Guglielmino R; Sant S; Pregel P; Riondato F; Miniscalco B; Cornaglia E; Nebbia C; Dacasto M
    Cell Biol Toxicol; 2006 Jul; 22(4):275-84. PubMed ID: 16802106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of cerebellar granule cells by tocopherols and tocotrienols against methylmercury toxicity.
    Shichiri M; Takanezawa Y; Uchida K; Tamai H; Arai H
    Brain Res; 2007 Nov; 1182():106-15. PubMed ID: 17949699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.