These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 15228962)
1. A quantum chemical study of the water-assisted mechanism in one-carbon unit transfer reaction catalyzed by glycinamide ribonucleotide transformylase. Qiao QA; Cai ZT; Feng DC; Jiang YS Biophys Chem; 2004 Aug; 110(3):259-66. PubMed ID: 15228962 [TBL] [Abstract][Full Text] [Related]
2. A quantum chemical study on the mechanism of glycinamide ribonucleotide transformylase inhibitor: 10-Formyl-5,8,10-trideazafolic acid. Qiao QA; Jin Y; Yang C; Zhang Z; Wang M Biophys Chem; 2005 Dec; 118(2-3):78-83. PubMed ID: 16198047 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the kinetic mechanism of Escherichia coli glycinamide ribonucleotide transformylase. Shim JH; Benkovic SJ Biochemistry; 1998 Jun; 37(24):8776-82. PubMed ID: 9628739 [TBL] [Abstract][Full Text] [Related]
5. A rapid screen of active site mutants in glycinamide ribonucleotide transformylase. Warren MS; Marolewski AE; Benkovic SJ Biochemistry; 1996 Jul; 35(27):8855-62. PubMed ID: 8688421 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations. Shim JH; Wall M; Benkovic SJ; Díaz N; Suárez D; Merz KM J Am Chem Soc; 2001 May; 123(20):4687-96. PubMed ID: 11457277 [TBL] [Abstract][Full Text] [Related]
7. Towards structure-based drug design: crystal structure of a multisubstrate adduct complex of glycinamide ribonucleotide transformylase at 1.96 A resolution. Klein C; Chen P; Arevalo JH; Stura EA; Marolewski A; Warren MS; Benkovic SJ; Wilson IA J Mol Biol; 1995 May; 249(1):153-75. PubMed ID: 7776369 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1. Stare J; Henson NJ; Eckert J J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473 [TBL] [Abstract][Full Text] [Related]
9. Improvement in the efficiency of formyl transfer of a GAR transformylase hybrid enzyme. Nixon AE; Benkovic SJ Protein Eng; 2000 May; 13(5):323-7. PubMed ID: 10835105 [TBL] [Abstract][Full Text] [Related]
10. Proton transfer dynamics of GART: the pH-dependent catalytic mechanism examined by electrostatic calculations. Morikis D; Elcock AH; Jennings PA; McCammon JA Protein Sci; 2001 Nov; 10(11):2379-92. PubMed ID: 11604543 [TBL] [Abstract][Full Text] [Related]
11. Cooperative effect of solvent in the neutral hydration of ketenimine: an ab initio study using the hybrid cluster/continuum model. Sun XM; Wei XG; Wu XP; Ren Y; Wong NB; Li WK J Phys Chem A; 2010 Jan; 114(1):595-602. PubMed ID: 20000561 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR. Zhang Y; Desharnais J; Greasley SE; Beardsley GP; Boger DL; Wilson IA Biochemistry; 2002 Dec; 41(48):14206-15. PubMed ID: 12450384 [TBL] [Abstract][Full Text] [Related]
13. Solvent effects in chemical processes. water-assisted proton transfer reaction of pterin in aqueous environment. Jaramillo P; Coutinho K; Canuto S J Phys Chem A; 2009 Nov; 113(45):12485-95. PubMed ID: 19754044 [TBL] [Abstract][Full Text] [Related]
14. 10-Formyl-5,8,10-trideazafolic acid (10-formyl-TDAF): a potent inhibitor of glycinamide ribonucleotide transformylase. Boger DL; Haynes NE; Kitos PA; Warren MS; Ramcharan J; Marolewski AE; Benkovic SJ Bioorg Med Chem; 1997 Sep; 5(9):1817-30. PubMed ID: 9354237 [TBL] [Abstract][Full Text] [Related]
16. Rational design, synthesis, evaluation, and crystal structure of a potent inhibitor of human GAR Tfase: 10-(trifluoroacetyl)-5,10-dideazaacyclic-5,6,7,8-tetrahydrofolic acid. Zhang Y; Desharnais J; Marsilje TH; Li C; Hedrick MP; Gooljarsingh LT; Tavassoli A; Benkovic SJ; Olson AJ; Boger DL; Wilson IA Biochemistry; 2003 May; 42(20):6043-56. PubMed ID: 12755606 [TBL] [Abstract][Full Text] [Related]
17. 10-(2-benzoxazolcarbonyl)-5,10-dideaza-acyclic-5,6,7,8-tetrahydrofolic acid: a potential inhibitor of GAR transformylase and AICAR transformylase. Marsilje TH; Hedrick MP; Desharnais J; Capps K; Tavassoli A; Zhang Y; Wilson IA; Benkovic SJ; Boger DL Bioorg Med Chem; 2003 Oct; 11(20):4503-9. PubMed ID: 13129586 [TBL] [Abstract][Full Text] [Related]
18. The human glycinamide ribonucleotide transformylase domain: purification, characterization, and kinetic mechanism. Caperelli CA; Giroux EL Arch Biochem Biophys; 1997 May; 341(1):98-103. PubMed ID: 9143358 [TBL] [Abstract][Full Text] [Related]
19. The human trifunctional enzyme of de novo purine biosynthesis: heterologous expression, purification, and preliminary characterization. Poch MT; Qin W; Caperelli CA Protein Expr Purif; 1998 Feb; 12(1):17-24. PubMed ID: 9473452 [TBL] [Abstract][Full Text] [Related]