These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 15228962)
21. Substrate specificity of human glycinamide ribonucleotide transformylase. Antle VD; Donat N; Hua M; Liao PL; Vince R; Carperelli CA Arch Biochem Biophys; 1999 Oct; 370(2):231-5. PubMed ID: 10577357 [TBL] [Abstract][Full Text] [Related]
22. Subcloning, characterization, and affinity labeling of Escherichia coli glycinamide ribonucleotide transformylase. Inglese J; Johnson DL; Shiau A; Smith JM; Benkovic SJ Biochemistry; 1990 Feb; 29(6):1436-43. PubMed ID: 2185839 [TBL] [Abstract][Full Text] [Related]
23. Catalytic role of calix[4]hydroquinone in acetone-water proton exchange: a quantum chemical study of proton transfer via keto-enol tautomerism. Zakharov M; Masunov AE; Dreuw A J Phys Chem A; 2008 Oct; 112(41):10405-12. PubMed ID: 18800781 [TBL] [Abstract][Full Text] [Related]
24. Carbocyclic glycinamide ribonucleotide is a substrate for glycinamide ribonucleotide transformylase. Caperelli CA; Price MF Arch Biochem Biophys; 1988 Jul; 264(1):340-2. PubMed ID: 3395127 [TBL] [Abstract][Full Text] [Related]
25. Direct transfer of one-carbon units in the transformylations of de novo purine biosynthesis. Smith GK; Mueller WT; Slieker LJ; DeBrosse CW; Benkovic SJ Biochemistry; 1982 Jun; 21(12):2870-4. PubMed ID: 7104299 [TBL] [Abstract][Full Text] [Related]
26. N10-substituted 5,8-dideazafolate inhibitors of glycinamide ribonucleotide transformylase. Caperelli CA J Med Chem; 1987 Jul; 30(7):1254-6. PubMed ID: 3599031 [TBL] [Abstract][Full Text] [Related]
27. [GAR synthetase . GAR transformylase . AIR synthetase]. Kaneko K Nihon Rinsho; 2003 Jan; 61 Suppl 1():31-9. PubMed ID: 12629687 [No Abstract] [Full Text] [Related]
28. Excited-state proton transfer through water bridges and structure of hydrogen-bonded complexes in 1H-pyrrolo[3,2-h]quinoline: adiabatic time-dependent density functional theory study. Kyrychenko A; Waluk J J Phys Chem A; 2006 Nov; 110(43):11958-67. PubMed ID: 17064184 [TBL] [Abstract][Full Text] [Related]
29. Unexpected formation of an epoxide-derived multisubstrate adduct inhibitor on the active site of GAR transformylase. Greasley SE; Marsilje TH; Cai H; Baker S; Benkovic SJ; Boger DL; Wilson IA Biochemistry; 2001 Nov; 40(45):13538-47. PubMed ID: 11695901 [TBL] [Abstract][Full Text] [Related]
30. The apo and ternary complex structures of a chemotherapeutic target: human glycinamide ribonucleotide transformylase. Dahms TE; Sainz G; Giroux EL; Caperelli CA; Smith JL Biochemistry; 2005 Jul; 44(29):9841-50. PubMed ID: 16026156 [TBL] [Abstract][Full Text] [Related]
31. Reaction mechanism and tautomeric equilibrium of 2-mercaptopyrimidine in the gas phase and in aqueous solution: a combined Monte Carlo and quantum mechanics study. Lima MC; Coutinho K; Canuto S; Rocha WR J Phys Chem A; 2006 Jun; 110(22):7253-61. PubMed ID: 16737277 [TBL] [Abstract][Full Text] [Related]
32. Structural and mechanistic studies on the HeLa and chicken liver proteins that catalyze glycinamide ribonucleotide synthesis and formylation and aminoimidazole ribonucleotide synthesis. Daubner SC; Young M; Sammons RD; Courtney LF; Benkovic SJ Biochemistry; 1986 May; 25(10):2951-7. PubMed ID: 3718932 [TBL] [Abstract][Full Text] [Related]
33. A comprehensive theoretical study on the hydrolysis of carbonyl sulfide in the neutral water. Deng C; Li QG; Ren Y; Wong NB; Chu SY; Zhu HJ J Comput Chem; 2008 Feb; 29(3):466-80. PubMed ID: 17663440 [TBL] [Abstract][Full Text] [Related]
34. Synthesis and biological evaluation of N-[4-[5-(2,4-diamino-6-oxo-1,6-dihydropyrimidin-5-yl)-2-(2,2,2-trifluoroacetyl)pentyl]benzoyl]-L-glutamic acid as a potential inhibitor of GAR Tfase and the de novo purine biosynthetic pathway. Cheng H; Hwang I; Chong Y; Tavassoli A; Webb ME; Zhang Y; Wilson IA; Benkovic SJ; Boger DL Bioorg Med Chem; 2005 May; 13(10):3593-9. PubMed ID: 15848772 [TBL] [Abstract][Full Text] [Related]
35. Design, synthesis, and biological evaluation of simplified alpha-keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Marsilje TH; Hedrick MP; Desharnais J; Tavassoli A; Zhang Y; Wilson IA; Benkovic SJ; Boger DL Bioorg Med Chem; 2003 Oct; 11(20):4487-501. PubMed ID: 13129585 [TBL] [Abstract][Full Text] [Related]
36. Conformationally restricted analogues designed for selective inhibition of GAR Tfase versus thymidylate synthase or dihydrofolate reductase. Boger DL; Labroli MA; Marsilje TH; Jin Q; Hedrick MP; Baker SJ; Shim JH; Benkovic SJ Bioorg Med Chem; 2000 May; 8(5):1075-86. PubMed ID: 10882019 [TBL] [Abstract][Full Text] [Related]
37. Design, synthesis, and biological evaluation of fluoronitrophenyl substituted folate analogues as potential inhibitors of GAR transformylase and AICAR transformylase. Boger DL; Marsilje TH; Castro RA; Hedrick MP; Jin Q; Baker SJ; Shim JH; Benkovic SJ Bioorg Med Chem Lett; 2000 Jul; 10(13):1471-5. PubMed ID: 10888335 [TBL] [Abstract][Full Text] [Related]
38. Neutral hydrolyses of carbon disulfide: An ab initio study of water catalysis. Deng C; Wu XP; Sun XM; Ren Y; Sheng YH J Comput Chem; 2009 Jan; 30(2):285-94. PubMed ID: 18613069 [TBL] [Abstract][Full Text] [Related]
39. Minimum energy pathways for proton transfer between adjacent sites exposed to water. Friedman R; Fischer S; Nachliel E; Scheiner S; Gutman M J Phys Chem B; 2007 May; 111(21):6059-70. PubMed ID: 17488114 [TBL] [Abstract][Full Text] [Related]
40. New insights into inhibitor design from the crystal structure and NMR studies of Escherichia coli GAR transformylase in complex with beta-GAR and 10-formyl-5,8,10-trideazafolic acid. Greasley SE; Yamashita MM; Cai H; Benkovic SJ; Boger DL; Wilson IA Biochemistry; 1999 Dec; 38(51):16783-93. PubMed ID: 10606510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]