These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1522917)

  • 21. Cortical correlates of acquired deafness to dissonance.
    Brattico E; Tervaniemi M; Valimaki V; Van Zuijen T; Peretz I
    Ann N Y Acad Sci; 2003 Nov; 999():158-60. PubMed ID: 14681131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central auditory processing of noncontextual consonance in music: an evoked potential study.
    Itoh K; Suwazono S; Nakada T
    J Acoust Soc Am; 2010 Dec; 128(6):3781-7. PubMed ID: 21218909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.
    Trost W; Frühholz S; Schön D; Labbé C; Pichon S; Grandjean D; Vuilleumier P
    Neuroimage; 2014 Dec; 103():55-64. PubMed ID: 25224999
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity of evoked potentials in the cat pulvinar.
    Khachaturian ZS; Shih TM; Kerr JL; Reisler KL
    Brain Res; 1975 Jun; 91(2):299-305. PubMed ID: 1164677
    [No Abstract]   [Full Text] [Related]  

  • 25. [About functional evolution of peripheral part of the auditory system].
    al'tman IaA
    Zh Evol Biokhim Fiziol; 2012; 48(1):99-105. PubMed ID: 22567981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional MRI/event-related potential study of sensory consonance and dissonance in musicians and nonmusicians.
    Minati L; Rosazza C; D'Incerti L; Pietrocini E; Valentini L; Scaioli V; Loveday C; Bruzzone MG
    Neuroreport; 2009 Jan; 20(1):87-92. PubMed ID: 19033878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term, passive exposure to non-traumatic acoustic noise induces neural adaptation in the adult rat medial geniculate body and auditory cortex.
    Lau C; Zhang JW; McPherson B; Pienkowski M; Wu EX
    Neuroimage; 2015 Feb; 107():1-9. PubMed ID: 25479019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From air oscillations to music and speech: functional magnetic resonance imaging evidence for fine-tuned neural networks in audition.
    Tervaniemi M; Szameitat AJ; Kruck S; Schröger E; Alter K; De Baene W; Friederici AD
    J Neurosci; 2006 Aug; 26(34):8647-52. PubMed ID: 16928852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.
    François C; Schön D
    Hear Res; 2014 Feb; 308():122-8. PubMed ID: 24035820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.
    Gutschalk A; Uppenkamp S; Riedel B; Bartsch A; Brandt T; Vogt-Schaden M
    Cortex; 2015 Dec; 73():24-35. PubMed ID: 26343343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Role of the geniculate body in performing conditioned reflexes to amplitude-modulated stimuli in the rat].
    Grigor'eva TI; Figurina II; Vasil'ev AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(2):265-71. PubMed ID: 3590970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulus-specific adaptation beyond pure tones.
    Nelken I; Yaron A; Polterovich A; Hershenhoren I
    Adv Exp Med Biol; 2013; 787():411-8. PubMed ID: 23716247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Left hemisphere specialization for duration discrimination of musical and speech sounds.
    Brancucci A; D'Anselmo A; Martello F; Tommasi L
    Neuropsychologia; 2008; 46(7):2013-9. PubMed ID: 18329056
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The control exerted by the auditory cortex on the activity of the medial geniculate body and inferior colliculus.
    Amato G; La Grutta V; Enia F
    Arch Sci Biol (Bologna); 1969; 53(4):291-313. PubMed ID: 5406618
    [No Abstract]   [Full Text] [Related]  

  • 36. Middle- and long-latency auditory evoked responses recorded from the vertex of normal and chronically lesioned cats.
    Buchwald JS; Hinman C; Norman RJ; Huang CM; Brown KA
    Brain Res; 1981 Jan; 205(1):91-109. PubMed ID: 6258712
    [No Abstract]   [Full Text] [Related]  

  • 37. The brain and hearing: auditory discriminations affected by brain lesions.
    Neff WD
    Ann Otol Rhinol Laryngol; 1977; 86(4 Pt 1):500-6. PubMed ID: 329733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auditory-evoked potential studies of cortical maturation in normal hearing and implanted children: correlations with changes in structure and speech perception.
    Eggermont JJ; Ponton CW
    Acta Otolaryngol; 2003 Jan; 123(2):249-52. PubMed ID: 12701751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temporal encoding of the voice onset time phonetic parameter by field potentials recorded directly from human auditory cortex.
    Steinschneider M; Volkov IO; Noh MD; Garell PC; Howard MA
    J Neurophysiol; 1999 Nov; 82(5):2346-57. PubMed ID: 10561410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants.
    Marsella P; Scorpecci A; Vecchiato G; Maglione AG; Colosimo A; Babiloni F
    Int J Pediatr Otorhinolaryngol; 2014 May; 78(5):737-43. PubMed ID: 24642416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.