These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15229236)

  • 1. Rapid, hierarchical modulation of vocal patterning by steroid hormones.
    Remage-Healey L; Bass AH
    J Neurosci; 2004 Jun; 24(26):5892-900. PubMed ID: 15229236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From social behavior to neural circuitry: steroid hormones rapidly modulate advertisement calling via a vocal pattern generator.
    Remage-Healey L; Bass AH
    Horm Behav; 2006 Sep; 50(3):432-41. PubMed ID: 16870192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid elevations in both steroid hormones and vocal signaling during playback challenge: a field experiment in Gulf toadfish.
    Remage-Healey L; Bass AH
    Horm Behav; 2005 Mar; 47(3):297-305. PubMed ID: 15708758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estradiol interacts with an opioidergic network to achieve rapid modulation of a vocal pattern generator.
    Remage-Healey L; Bass AH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Feb; 196(2):137-46. PubMed ID: 20035335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity in brain sexuality is revealed by the rapid actions of steroid hormones.
    Remage-Healey L; Bass AH
    J Neurosci; 2007 Jan; 27(5):1114-22. PubMed ID: 17267566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vocal behavior and vocal central pattern generator organization diverge among toadfishes.
    Chagnaud BP; Bass AH
    Brain Behav Evol; 2014; 84(1):51-65. PubMed ID: 25115796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal-acoustic circuitry and descending vocal pathways in teleost fish: convergence with terrestrial vertebrates reveals conserved traits.
    Goodson JL; Bass AH
    J Comp Neurol; 2002 Jul; 448(3):298-322. PubMed ID: 12115710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Midbrain periaqueductal gray and vocal patterning in a teleost fish.
    Kittelberger JM; Land BR; Bass AH
    J Neurophysiol; 2006 Jul; 96(1):71-85. PubMed ID: 16598068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vocalization frequency and duration are coded in separate hindbrain nuclei.
    Chagnaud BP; Baker R; Bass AH
    Nat Commun; 2011 Jun; 2():346. PubMed ID: 21673667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproductive and diurnal rhythms regulate vocal motor plasticity in a teleost fish.
    Rubow TK; Bass AH
    J Exp Biol; 2009 Oct; 212(Pt 20):3252-62. PubMed ID: 19801430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sexually-dimorphic expression of tyrosine hydroxylase immunoreactivity in the brain of a vocal teleost fish (Porichthys notatus).
    Goebrecht GK; Kowtoniuk RA; Kelly BG; Kittelberger JM
    J Chem Neuroanat; 2014 Mar; 56():13-34. PubMed ID: 24418093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vocal-motor and auditory connectivity of the midbrain periaqueductal gray in a teleost fish.
    Kittelberger JM; Bass AH
    J Comp Neurol; 2013 Mar; 521(4):791-812. PubMed ID: 22826153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Premotor Neuron Divergence Reflects Vocal Evolution.
    Barkan CL; Kelley DB; Zornik E
    J Neurosci; 2018 Jun; 38(23):5325-5337. PubMed ID: 29875228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melatonin action in a midbrain vocal-acoustic network.
    Feng NY; Bass AH
    J Exp Biol; 2014 Apr; 217(Pt 7):1046-57. PubMed ID: 24265429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic midbrain-evoked vocalization is inhibited by vasoactive intestinal polypeptide in the teleost Porichthys notatus.
    Goodson JL; Bass AH
    Brain Res; 2000 May; 865(1):107-11. PubMed ID: 10814739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catecholaminergic Fiber Innervation of the Vocal Motor System Is Intrasexually Dimorphic in a Teleost with Alternative Reproductive Tactics.
    Ghahramani ZN; Timothy M; Kaur G; Gorbonosov M; Chernenko A; Forlano PM
    Brain Behav Evol; 2015; 86(2):131-44. PubMed ID: 26355302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication.
    Kelley DB; Ballagh IH; Barkan CL; Bendesky A; Elliott TM; Evans BJ; Hall IC; Kwon YM; Kwong-Brown U; Leininger EC; Perez EC; Rhodes HJ; Villain A; Yamaguchi A; Zornik E
    J Neurosci; 2020 Jan; 40(1):22-36. PubMed ID: 31896561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucocorticoid and androgen signaling pathways diverge between advertisement calling and non-calling fish.
    Genova RM; Marchaterre MA; Knapp R; Fergus D; Bass AH
    Horm Behav; 2012 Sep; 62(4):426-32. PubMed ID: 22884426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment.
    Bass AH; Gilland EH; Baker R
    Science; 2008 Jul; 321(5887):417-21. PubMed ID: 18635807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural transcriptome reveals molecular mechanisms for temporal control of vocalization across multiple timescales.
    Feng NY; Fergus DJ; Bass AH
    BMC Genomics; 2015 May; 16(1):408. PubMed ID: 26014649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.