These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 15229536)

  • 1. Public-private collaborations and the race to sequence Agrobacterium tumefaciens.
    Harvey M; McMeekin A
    Nat Biotechnol; 2004 Jul; 22(7):807-10. PubMed ID: 15229536
    [No Abstract]   [Full Text] [Related]  

  • 2. PCR systems for Agrobacterium tumefaciens detection.
    Sachadyn P; Kur J
    Acta Microbiol Pol; 1997; 46(2):129-43. PubMed ID: 9429287
    [No Abstract]   [Full Text] [Related]  

  • 3. The development of DNA sequencing: from the genome of a bacteriophage to that of a Neanderthal.
    Sundermann U; Kushnir S; Schulz F
    Angew Chem Int Ed Engl; 2010 Nov; 49(47):8795-7. PubMed ID: 20862760
    [No Abstract]   [Full Text] [Related]  

  • 4. [Agrobacterium tumefaciens-mediated transformation of Chaetomium globosum and its T-DNA insertional mutagenesis].
    Gao XX; Yang Q
    Wei Sheng Wu Xue Bao; 2005 Feb; 45(1):129-31. PubMed ID: 15847179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic assignment and mechanism of action of a crop growth promoting Rhizobium radiobacter strain used as a biofertiliser on graminaceous crops in Russia.
    Humphry DR; Andrews M; Santos SR; James EK; Vinogradova LV; Perin L; Reis VM; Cummings SP
    Antonie Van Leeuwenhoek; 2007 Feb; 91(2):105-13. PubMed ID: 17013548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flying through the genome: a comprehensive study of functional genomics using RNAi in Drosophila.
    Andres AJ
    Trends Endocrinol Metab; 2004 Aug; 15(6):243-7. PubMed ID: 15358275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis.
    Zhong YH; Wang XL; Wang TH; Jiang Q
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1348-54. PubMed ID: 17021875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-DNA-mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants.
    Ulker B; Li Y; Rosso MG; Logemann E; Somssich IE; Weisshaar B
    Nat Biotechnol; 2008 Sep; 26(9):1015-7. PubMed ID: 18758448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using 23s rDNA to identify contaminations of Escherichia coli in Agrobacterium tumefaciens cultures.
    Manchado-Rojo M; Weiss J; Egea-Cortines M
    Anal Biochem; 2008 Jan; 372(2):253-4. PubMed ID: 17945175
    [No Abstract]   [Full Text] [Related]  

  • 10. REP code: defining bacterial identity in extragenic space.
    Tobes R; Ramos JL
    Environ Microbiol; 2005 Feb; 7(2):225-8. PubMed ID: 15658989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens.
    Kumlehn J; Serazetdinova L; Hensel G; Becker D; Loerz H
    Plant Biotechnol J; 2006 Mar; 4(2):251-61. PubMed ID: 17177801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum.
    Weld RJ; Eady CC; Ridgway HJ
    J Microbiol Methods; 2006 Apr; 65(1):202-7. PubMed ID: 16107285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Beijerinckia fluminensis strains CIP 106281T and UQM 1685T as Rhizobium radiobacter strains, and proposal of Beijerinckia doebereinerae sp. nov. to accommodate Beijerinckia fluminensis LMG 2819.
    Oggerin M; Arahal DR; Rubio V; MarĂ­n I
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2323-8. PubMed ID: 19620377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus.
    Pardo AG; Kemppainen M; Valdemoros D; Duplessis S; Martin F; Tagu D
    Rev Argent Microbiol; 2005; 37(2):69-72. PubMed ID: 16178458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Massive parallelism, randomness and genomic advances.
    Venter JC; Levy S; Stockwell T; Remington K; Halpern A
    Nat Genet; 2003 Mar; 33 Suppl():219-27. PubMed ID: 12610531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timeline: A brief history of chimps.
    Nature; 2005 Sep; 437(7055):48-9. PubMed ID: 16136125
    [No Abstract]   [Full Text] [Related]  

  • 17. Crystal structure of glycerophosphodiester phosphodiesterase from Agrobacterium tumefaciens by SAD with a large asymmetric unit.
    Rao KN; Bonanno JB; Burley SK; Swaminathan S
    Proteins; 2006 Nov; 65(2):514-8. PubMed ID: 16909422
    [No Abstract]   [Full Text] [Related]  

  • 18. [Agrobacterium tumefaciens-mediated transformation of the white-rot basidiomycete, phanerochaete chrysosporium].
    Li W; Zhang YZ
    Wei Sheng Wu Xue Bao; 2005 Oct; 45(5):784-7. PubMed ID: 16342777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene inactivation mediated by Agrobacterium tumefaciens in the filamentous fungi Metarhizium anisopliae.
    Staats CC; Junges A; Fitarelli M; Furlaneto MC; Vainstein MH; Schrank A
    Appl Microbiol Biotechnol; 2007 Sep; 76(4):945-50. PubMed ID: 17607574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens.
    Fang W; Pei Y; Bidochka MJ
    Can J Microbiol; 2006 Jul; 52(7):623-6. PubMed ID: 16917517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.