BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15230309)

  • 1. Indices for bioavailability and biotransformation potential of contaminants in soils.
    Braida WJ; White JC; Pignatello JJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1585-91. PubMed ID: 15230309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria.
    Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M
    J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil.
    Rhodes AH; Dew NM; Semple KT
    Environ Toxicol Chem; 2008 Jul; 27(7):1488-95. PubMed ID: 18260689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing sequestration of selected polycyclic aromatic hydrocarbons by use of adsorption modeling and temperature-programmed desorption.
    Abu A; Smith S
    Environ Sci Technol; 2005 Oct; 39(19):7585-91. PubMed ID: 16245831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bioavailability of soil-sorbed atrazine.
    Park JH; Feng Y; Ji P; Voice TC; Boyd SA
    Appl Environ Microbiol; 2003 Jun; 69(6):3288-98. PubMed ID: 12788728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentration-dependent kinetics of pollutant desorption from soils.
    Braida WJ; White JC; Zhao D; Ferrandino FJ; Pignatello JJ
    Environ Toxicol Chem; 2002 Dec; 21(12):2573-80. PubMed ID: 12463551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system.
    Jin H; Zhou W; Zhu L
    J Environ Sci (China); 2013 Jul; 25(7):1355-61. PubMed ID: 24218847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of loosely bound humic substances and humin in the bioavailability of phenanthrene aged in soil.
    Nam K; Kim JY
    Environ Pollut; 2002; 118(3):427-33. PubMed ID: 12009141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil.
    Marchal G; Smith KE; Rein A; Winding A; Wollensen de Jonge L; Trapp S; Karlson UG
    Environ Pollut; 2013 Oct; 181():200-10. PubMed ID: 23871817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioavailability of polycyclic aromatic hydrocarbons sequestered in sediment: microbial study and model prediction.
    Beckles DM; Chen W; Hughes JB
    Environ Toxicol Chem; 2007 May; 26(5):878-83. PubMed ID: 17521132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability and degradation of phenanthrene in compost amended soils.
    Puglisi E; Cappa F; Fragoulis G; Trevisan M; Del Re AA
    Chemosphere; 2007 Mar; 67(3):548-56. PubMed ID: 17125813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced bioavailability of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium.
    Robertson BK; Jjemba PK
    Chemosphere; 2005 Jan; 58(3):263-70. PubMed ID: 15581929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic characterization of adsorption and slow desorption of phenanthrene aged in soils.
    Abu A; Smith S
    Environ Sci Technol; 2006 Sep; 40(17):5409-14. PubMed ID: 16999118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a kinetic basis for bioavailability of sorbed naphthalene in soil slurries.
    Park JH; Zhao X; Voice TC
    Water Res; 2002 Mar; 36(6):1620-8. PubMed ID: 11996350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2006 Feb; 62(7):1126-34. PubMed ID: 16087211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential use of a self-dying reporter bacterium to determine the bioavailability of aged phenanthrene in soil: comparison with physicochemical measures.
    Shin D; Nam K
    J Hazard Mater; 2014 Jan; 265():1-7. PubMed ID: 24333709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of sorbed chemicals in soil.
    Scow KM; Fan S; Johnson C; Ma GM
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):93-5. PubMed ID: 8565921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking desorption kinetics to phenanthrene biodegradation in soil.
    Rhodes AH; McAllister LE; Semple KT
    Environ Pollut; 2010 May; 158(5):1348-53. PubMed ID: 20172637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons.
    Congiu E; Ortega-Calvo JJ
    Environ Sci Technol; 2014 Sep; 48(18):10869-77. PubMed ID: 25121829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.