These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15230311)

  • 1. Estimation of microbial reductive transformation rates for chlorinated benzenes and phenols using a quantitative structure-activity relationship approach.
    Tebes-Stevens CL; Jones WJ
    Environ Toxicol Chem; 2004 Jul; 23(7):1600-9. PubMed ID: 15230311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling reductive dehalogenation with quantum chemically derived descriptors.
    Rorije E; Langenberg JH; Richter J; Peijnenburg WJ
    SAR QSAR Environ Res; 1995; 4(4):237-52. PubMed ID: 8765910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of bacterial degradation and transformation of chlorinated monoaromatic compounds.
    Häggblom M
    J Basic Microbiol; 1990; 30(2):115-41. PubMed ID: 2191115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dechlorination pathways of diverse chlorinated aromatic pollutants conducted by Dehalococcoides sp. strain CBDB1.
    Lu GN; Tao XQ; Huang W; Dang Z; Li Z; Liu CQ
    Sci Total Environ; 2010 May; 408(12):2549-54. PubMed ID: 20346484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationships for chemical toxicity to environmental bacteria.
    Blum DJ; Speece RE
    Ecotoxicol Environ Saf; 1991 Oct; 22(2):198-224. PubMed ID: 1769352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial transformation of chlorinated benzenes under anaerobic conditions.
    Adrian L; Görisch H
    Res Microbiol; 2002 Apr; 153(3):131-7. PubMed ID: 12002562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols.
    Padmanabhan J; Parthasarathi R; Subramanian V; Chattaraj PK
    Chem Res Toxicol; 2006 Mar; 19(3):356-64. PubMed ID: 16544939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships for mono alkylated or halogenated phenols.
    Schultz TW; Cajina-Quezada M
    Toxicol Lett; 1987 Jul; 37(2):121-30. PubMed ID: 3111016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partition kinetics of chlorobenzenes in a sediment-water system.
    Djohan D; Yu J; Connell D
    Chemosphere; 2017 Nov; 186():938-947. PubMed ID: 28838040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting reductive transformation rates of halogenated aliphatic compounds using different QSAR approaches.
    Rorije E; Eriksson L; Verboom H; Verhaar HJ; Hermens JL; Peijnenburg WJ
    Environ Sci Pollut Res Int; 1997; 4(1):47-54. PubMed ID: 19002416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro.
    Liu X; Chen J; Yu H; Zhao J; Giesy JP; Wang X
    Chemosphere; 2006 Sep; 64(10):1619-26. PubMed ID: 16790261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HQSAR and CoMFA approaches in predicting reactivity of halogenated compounds with hydroxyl radicals.
    Vrtacnik M; Voda K
    Chemosphere; 2003 Sep; 52(10):1689-99. PubMed ID: 12871736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes.
    Olaniran AO; Igbinosa EO
    Chemosphere; 2011 May; 83(10):1297-306. PubMed ID: 21531434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The uridine diphosphate glucuronosyltransferases: quantitative structure-activity relationships for hydroxyl polychlorinated biphenyl substrates.
    Wang D
    Arch Toxicol; 2005 Oct; 79(10):554-60. PubMed ID: 15889236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehalococcoides mccartyi strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes.
    Fricker AD; LaRoe SL; Shea ME; Bedard DL
    Environ Sci Technol; 2014 Dec; 48(24):14300-8. PubMed ID: 25377868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of carbon isotope fractionation during anaerobic reductive dehalogenation of chlorinated and brominated benzenes.
    Sohn SY; Kuntze K; Nijenhuis I; Häggblom MM
    Chemosphere; 2018 Feb; 193():785-792. PubMed ID: 29175406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles.
    Argese E; Bettiol C; Giurin G; Miana P
    Chemosphere; 1999 Apr; 38(10):2281-92. PubMed ID: 10101866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial dehalorespiration with chlorinated benzenes.
    Adrian L; Szewzyk U; Wecke J; Görisch H
    Nature; 2000 Nov; 408(6812):580-3. PubMed ID: 11117744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake pathways of chlorobenzenes in plants and their correlation with N-octanol/water partition coefficients.
    Scheunert I; Topp E; Attar A; Korte F
    Ecotoxicol Environ Saf; 1994 Feb; 27(1):90-104. PubMed ID: 7525208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSPR models for the physicochemical properties of halogenated methyl-phenyl ethers.
    Xu HY; Zhang JY; Zou JW; Chen XS
    J Mol Graph Model; 2008 Apr; 26(7):1076-81. PubMed ID: 18060816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.