These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 15230319)
1. Susceptibility of the leaf-eating beetle, Galerucella calmariensis, a biological control agent for purple loosestrife (Lythrum salcaria), to three mosquito control larvicides. Lowe TP; Hershberger TD Environ Toxicol Chem; 2004 Jul; 23(7):1662-71. PubMed ID: 15230319 [TBL] [Abstract][Full Text] [Related]
2. Interactions of root and leaf herbivores on purple loosestrife (Lythrum salicaria). Hunt-Joshi TR; Blossey B Oecologia; 2005 Feb; 142(4):554-63. PubMed ID: 15619100 [TBL] [Abstract][Full Text] [Related]
3. Control of Aedes albopictus larvae using time-release larvicide formulations in Louisiana. Nasci RS; Wright GB; Willis FS J Am Mosq Control Assoc; 1994 Mar; 10(1):1-6. PubMed ID: 7516963 [TBL] [Abstract][Full Text] [Related]
4. Trophic interactions between two herbivorous insects, Galerucella calmariensis and Myzus lythri, feeding on purple loosestrife, Lythrum salicaria, and two insect predators, Harmonia axyridis and Chrysoperla carnea. Matos B; Obrycki JJ J Insect Sci; 2007; 7():1-8. PubMed ID: 20302526 [TBL] [Abstract][Full Text] [Related]
5. Mass rearing the weevil Hylobius transversovittatus (Coleoptera: Curculionidae), biological control agent of Lythrum salicaria, on semiartificial diet. Blossey B; Eberts D; Morrison E; Hunt TR J Econ Entomol; 2000 Dec; 93(6):1644-56. PubMed ID: 11142294 [TBL] [Abstract][Full Text] [Related]
6. Mass rearing methods for Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae), biological control agents of Lythrum salicaria (Lythraceae). Blossey B; Hunt TR J Econ Entomol; 1999 Apr; 92(2):325-34. PubMed ID: 10333750 [TBL] [Abstract][Full Text] [Related]
7. Field efficacy and nontarget effects of the mosquito larvicides temephos, methoprene, and Bacillus thuringiensis var. israelensis in Florida mangrove swamps. Lawler SP; Jensen T; Dritz DA; Wichterman G J Am Mosq Control Assoc; 1999 Dec; 15(4):446-52. PubMed ID: 10612606 [TBL] [Abstract][Full Text] [Related]
8. Field trials with methoprene, temephos, and Bacillus thuringiensis serovar israelensis for the control of larval Culiseta melanura. Woodrow RJ; Howard JJ; White DJ J Am Mosq Control Assoc; 1995 Dec; 11(4):424-7. PubMed ID: 8825501 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of methoprene, temephos and Bacillus thuringiensis var. israelensis against Coquillettidia perturbans larvae in Minnesota. Sjogren RD; Batzer DP; Juenemann MA J Am Mosq Control Assoc; 1986 Sep; 2(3):276-9. PubMed ID: 2466954 [TBL] [Abstract][Full Text] [Related]
10. Ovipositional and ovicidal effects of the microbial agent Bacillus thuringiensis israelensis on Culex quinquefasciatus say (Diptera: Culicidae). Zahiri NS; Mulla MS J Vector Ecol; 2006 Jun; 31(1):29-34. PubMed ID: 16859087 [TBL] [Abstract][Full Text] [Related]
11. Matrix habitat and plant damage influence colonization of purple loosestrife patches by specialist leaf-beetles. Dávalos A; Blossey B Environ Entomol; 2011 Oct; 40(5):1074-80. PubMed ID: 22251719 [TBL] [Abstract][Full Text] [Related]
13. Control of arbovirus vector Verrallina funerea (Diptera: Culicidae) in southeast Queensland, Australia. Jeffery JA; Kay BH; Ryan PA J Econ Entomol; 2007 Oct; 100(5):1512-8. PubMed ID: 17972627 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the effects of distance and conspecifics on colonization: experiments and models using the loosestrife leaf beetle, Galerucella calmariensis. Grevstad FS; Herzig AL Oecologia; 1997 Mar; 110(1):60-68. PubMed ID: 28307469 [TBL] [Abstract][Full Text] [Related]
15. Efficacy, fate, and potential effects on salmonids of mosquito larvicides in catch basins in Seattle, Washington. Sternberg M; Grue C; Conquest L; Grassley J; King K J Am Mosq Control Assoc; 2012 Sep; 28(3):206-18. PubMed ID: 23833901 [TBL] [Abstract][Full Text] [Related]
16. Combining Attractants and Larvicides in Biodegradable Matrices for Sustainable Mosquito Vector Control. Schorkopf DL; Spanoudis CG; Mboera LE; Mafra-Neto A; Ignell R; Dekker T PLoS Negl Trop Dis; 2016 Oct; 10(10):e0005043. PubMed ID: 27768698 [TBL] [Abstract][Full Text] [Related]
17. Lethal and Sublethal Concentrations of Formulated Larvicides Against Susceptible Aedes aegypti. Aldridge RL; Alto BW; Connelly CR; Okech B; Siegfried B; Linthicum KJ J Am Mosq Control Assoc; 2022 Dec; 38(4):250-260. PubMed ID: 36318783 [TBL] [Abstract][Full Text] [Related]
18. The effects of temperature, diet, and other factors on development, survivorship, and oviposition of Aethina tumida (Coleoptera: Nitidulidae). Meikle WG; Patt JM J Econ Entomol; 2011 Jun; 104(3):753-63. PubMed ID: 21735891 [TBL] [Abstract][Full Text] [Related]
19. Field effectiveness of microbial larvicides on mosquito larvae in malaria areas of Botswana and Zimbabwe. Mpofu M; Becker P; Mudambo K; de Jager C Malar J; 2016 Dec; 15(1):586. PubMed ID: 27923385 [TBL] [Abstract][Full Text] [Related]
20. Toxicity and repellency of Tephrosia candida to larval and adult Diaprepes root weevil (Coleoptera: Curculionidae). Lapointe SL; McKenzie CL; Hunter WB J Econ Entomol; 2003 Jun; 96(3):811-6. PubMed ID: 12852621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]