BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15230330)

  • 1. Acute-to-chronic species sensitivity distribution extrapolation.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Jul; 23(7):1774-85. PubMed ID: 15230330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of data manipulation and statistical methods on species sensitivity distributions.
    Duboudin C; Ciffroy P; Magaud H
    Environ Toxicol Chem; 2004 Feb; 23(2):489-99. PubMed ID: 14982398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems.
    Maltby L; Blake N; Brock TC; van den Brink PJ
    Environ Toxicol Chem; 2005 Feb; 24(2):379-88. PubMed ID: 15719998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can We Reasonably Predict Chronic Species Sensitivity Distributions from Acute Species Sensitivity Distributions?
    Hiki K; Iwasaki Y
    Environ Sci Technol; 2020 Oct; 54(20):13131-13136. PubMed ID: 32924457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interspecies correlation estimates predict protective environmental concentrations.
    Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Mayer FL
    Environ Sci Technol; 2006 May; 40(9):3102-11. PubMed ID: 16719118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria.
    Dyer SD; Versteeg DJ; Belanger SE; Chaney JG; Raimondo S; Barron MG
    Environ Sci Technol; 2008 Apr; 42(8):3076-83. PubMed ID: 18497169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury toxicity to freshwater organisms: extrapolation using species sensitivity distribution.
    Rodrigues AC; Jesus FT; Fernandes MA; Morgado F; Soares AM; Abreu SN
    Bull Environ Contam Toxicol; 2013 Aug; 91(2):191-6. PubMed ID: 23771310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of species sensitivity distributions and estimation of HC(5) of organochlorine pesticides with five statistical approaches.
    Wang B; Yu G; Huang J; Hu H
    Ecotoxicology; 2008 Nov; 17(8):716-24. PubMed ID: 18463978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing Fifth Percentile Hazard Concentration Estimation Using Toxicity-Normalized Species Sensitivity Distributions.
    Dhond AK; Barron MG
    Environ Sci Technol; 2022 Dec; 56(23):17188-17196. PubMed ID: 36410104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic acute species sensitivity distributions of ZnO and CuO nanoparticles.
    Adam N; Schmitt C; De Bruyn L; Knapen D; Blust R
    Sci Total Environ; 2015 Sep; 526():233-42. PubMed ID: 25933293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of species sensitivity distributions based on population or individual endpoints.
    Beaudouin R; Péry AR
    Environ Toxicol Chem; 2013 Apr; 32(5):1173-7. PubMed ID: 23377887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of aquatic toxicity benchmarks for oil products using species sensitivity distributions.
    Barron MG; Hemmer MJ; Jackson CR
    Integr Environ Assess Manag; 2013 Oct; 9(4):610-5. PubMed ID: 23554001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of wildlife hazard levels using interspecies correlation models and standard laboratory rodent toxicity data.
    Awkerman JA; Raimondo S; Barron MG
    J Toxicol Environ Health A; 2009; 72(24):1604-9. PubMed ID: 20077235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating hazardous concentrations by an informative Bayesian approach.
    Ciffroy P; Keller M; Pasanisi A
    Environ Toxicol Chem; 2013 Mar; 32(3):602-11. PubMed ID: 23280589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron.
    Brock TC; Crum SJ; Deneer JW; Heimbach F; Roijackers RM; Sinkeldam JA
    Environ Pollut; 2004 Aug; 130(3):403-26. PubMed ID: 15182972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species sensitivity distribution evaluation for chronic nickel toxicity to marine organisms.
    DeForest DK; Schlekat CE
    Integr Environ Assess Manag; 2013 Oct; 9(4):580-9. PubMed ID: 23553986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Re-evaluation of target lipid model-derived HC5 predictions for hydrocarbons.
    McGrath JA; Fanelli CJ; Di Toro DM; Parkerton TF; Redman AD; Paumen ML; Comber M; Eadsforth CV; den Haan K
    Environ Toxicol Chem; 2018 Jun; 37(6):1579-1593. PubMed ID: 29352727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China.
    Feng CL; Wu FC; Dyer SD; Chang H; Zhao XL
    Chemosphere; 2013 Jan; 90(3):1177-83. PubMed ID: 23058200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting assessment factors for species sensitivity distributions as a function of sample size and variation in species sensitivity.
    Kamo M; Hayashi TI; Iwasaki Y
    Ecotoxicol Environ Saf; 2022 Nov; 246():114170. PubMed ID: 36242822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.