These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 152310)

  • 21. The effects of ADP and phosphate on the contraction of muscle fibers.
    Cooke R; Pate E
    Biophys J; 1985 Nov; 48(5):789-98. PubMed ID: 3878160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impulse rates and sensitivity to stretch of soleus muscle spindle afferent fibers during locomotion in premammillary cats.
    Taylor J; Stein RB; Murphy PR
    J Neurophysiol; 1985 Feb; 53(2):341-60. PubMed ID: 3156970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of the actomyosin ATPase in muscle fibers.
    Goldman YE
    Annu Rev Physiol; 1987; 49():637-54. PubMed ID: 2952053
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strain sensitivity and turnover rate of low force cross-bridges in contracting skeletal muscle fibers in the presence of phosphate.
    Iwamoto H
    Biophys J; 1995 Jan; 68(1):243-50. PubMed ID: 7711247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic characteristics of alpha-toxin-permeabilized smooth muscle.
    Trinkle-Mulcahy L; Siegman MJ; Butler TM
    Am J Physiol; 1994 Jun; 266(6 Pt 1):C1673-83. PubMed ID: 8023897
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy cost of force production is reduced after active stretch in skinned muscle fibres.
    Joumaa V; Herzog W
    J Biomech; 2013 Apr; 46(6):1135-9. PubMed ID: 23422864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle.
    Metzger JM; Greaser ML; Moss RL
    J Gen Physiol; 1989 May; 93(5):855-83. PubMed ID: 2661721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin.
    Khromov AS; Webb MR; Ferenczi MA; Trentham DR; Somlyo AP; Somlyo AV
    Biophys J; 2004 Apr; 86(4):2318-28. PubMed ID: 15041670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of deuterium oxide on elementary steps in the ATPase reaction. Evidence for the similarity of key intermediates in contractile and transport ATPase.
    Inoue A; Fukushima Y; Tonomura Y
    J Biochem; 1975 Dec; 78(6):1113-21. PubMed ID: 131792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1988 Apr; 263(12):5505-11. PubMed ID: 2965703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calcium ion-insensitive contraction of glycerinated porcine cardiac muscle fibers by Mg-inosine triphosphate. ITP as a tool to dissociate the contraction mechanism from the regulatory mechanism.
    Toyo-oka T
    Circ Res; 1981 Dec; 49(6):1350-5. PubMed ID: 6118211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of monovalent phosphate anions in the crossbridge kinetics of chemically skinned rabbit psoas fibers.
    Kawai M; Güth K; Cornacchia TW
    Adv Exp Med Biol; 1988; 226():203-17. PubMed ID: 2970207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dependence of isometric tension, isometric ATPase activity, and shortening velocity of limulus muscle on the MgATP concentration.
    Pferrer S; Kulik R; Hiller T; Kuhn HJ
    Biophys J; 1988 Feb; 53(2):127-35. PubMed ID: 2964257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers.
    Chase PB; Kushmerick MJ
    Biophys J; 1988 Jun; 53(6):935-46. PubMed ID: 2969265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in force and stiffness during stretch of skeletal muscle fibers, effects of hypertonicity.
    Månsson A
    Biophys J; 1989 Aug; 56(2):429-33. PubMed ID: 2789080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers.
    Rassier DE; Herzog W
    J Biomech; 2004 Sep; 37(9):1305-12. PubMed ID: 15275837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition.
    He ZH; Bottinelli R; Pellegrino MA; Ferenczi MA; Reggiani C
    Biophys J; 2000 Aug; 79(2):945-61. PubMed ID: 10920025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myofibrillar end of the creatine phosphate energy shuttle.
    Savabi F; Geiger PJ; Bessman SP
    Am J Physiol; 1984 Nov; 247(5 Pt 1):C424-32. PubMed ID: 6238538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.