BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 15231705)

  • 1. Acetylcholine-induced relaxation and hyperpolarization in small bovine adrenal cortical arteries: role of cytochrome P450 metabolites.
    Zhang DX; Gauthier KM; Campbell WB
    Endocrinology; 2004 Oct; 145(10):4532-9. PubMed ID: 15231705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery.
    Dong H; Waldron GJ; Galipeau D; Cole WC; Triggle CR
    Br J Pharmacol; 1997 Feb; 120(4):695-701. PubMed ID: 9051310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cytochrome P450 inhibitors on EDHF-mediated relaxation in the rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Davis SC; Högestätt ED
    Br J Pharmacol; 1996 Jul; 118(5):1147-52. PubMed ID: 8818337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent relaxation and hyperpolarization in guinea-pig coronary artery: role of epoxyeicosatrienoic acid.
    Eckman DM; Hopkins N; McBride C; Keef KD
    Br J Pharmacol; 1998 May; 124(1):181-9. PubMed ID: 9630358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence against a role of cytochrome P450-derived arachidonic acid metabolites in endothelium-dependent hyperpolarization by acetylcholine in rat isolated mesenteric artery.
    Fukao M; Hattori Y; Kanno M; Sakuma I; Kitabatake A
    Br J Pharmacol; 1997 Feb; 120(3):439-46. PubMed ID: 9031747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of histamine-induced relaxation in bovine small adrenal cortical arteries.
    Zhang DX; Gauthier KM; Campbell WB
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E1058-63. PubMed ID: 16076876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apamin-sensitive, non-nitric oxide (NO) endothelium-dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+.
    Drummond GR; Selemidis S; Cocks TM
    Br J Pharmacol; 2000 Feb; 129(4):811-9. PubMed ID: 10683206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of endothelium-derived relaxing factors released by bradykinin in human resistance arteries.
    Ohlmann P; Martínez MC; Schneider F; Stoclet JC; Andriantsitohaina R
    Br J Pharmacol; 1997 Jun; 121(4):657-64. PubMed ID: 9208131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450 activity and endothelial dysfunction in insulin resistance.
    Katakam PV; Hoenig M; Ujhelyi MR; Miller AW
    J Vasc Res; 2000; 37(5):426-34. PubMed ID: 11025406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relaxation induced by acetylcholine involves endothelium-derived hyperpolarizing factor in 2-kidney 1-clip hypertensive rat carotid arteries.
    Sendão Oliveira AP; Bendhack LM
    Pharmacology; 2004 Dec; 72(4):231-9. PubMed ID: 15539883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F; Dusting GJ
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice.
    Chataigneau T; Félétou M; Huang PL; Fishman MC; Duhault J; Vanhoutte PM
    Br J Pharmacol; 1999 Jan; 126(1):219-26. PubMed ID: 10051139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA; Buckley CH; Jones GC; Sandeep TC; Andrews RC; Elliott AI; Gray GA; Williams BC; McKnight JA; Walker BR; Hadoke PW
    Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of nitric oxide- and prostaglandin-independent relaxation in response to acetylcholine in rabbit renal artery.
    Kagota S; Yamaguchi Y; Nakamura K; Kunitomo M
    Clin Exp Pharmacol Physiol; 1999 Oct; 26(10):790-6. PubMed ID: 10549403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steroid-producing cells regulate arterial tone of adrenal cortical arteries.
    Zhang DX; Gauthier KM; Falck JR; Siddam A; Campbell WB
    Endocrinology; 2007 Aug; 148(8):3569-76. PubMed ID: 17446179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia.
    Taniguchi J; Honda H; Shibusawa Y; Iwata T; Notoya Y
    Vascul Pharmacol; 2005 Jun; 43(1):47-55. PubMed ID: 15953770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of PGI2 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid.
    Rosolowsky M; Campbell WB
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H327-35. PubMed ID: 8447448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.