BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15231790)

  • 1. Mu-like prophage strong gyrase site sequences: analysis of properties required for promoting efficient mu DNA replication.
    Oram M; Pato ML
    J Bacteriol; 2004 Jul; 186(14):4575-84. PubMed ID: 15231790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biochemical analysis of the interaction of DNA gyrase with the bacteriophage Mu, pSC101 and pBR322 strong gyrase sites: the role of DNA sequence in modulating gyrase supercoiling and biological activity.
    Oram M; Howells AJ; Maxwell A; Pato ML
    Mol Microbiol; 2003 Oct; 50(1):333-47. PubMed ID: 14507384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement of the bacteriophage Mu strong gyrase site and effect on Mu DNA replication.
    Pato ML; Banerjee M
    J Bacteriol; 1999 Sep; 181(18):5783-9. PubMed ID: 10482521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication of Mu prophages lacking the central strong gyrase site.
    Pato ML
    Res Microbiol; 2004 Sep; 155(7):553-8. PubMed ID: 15313255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of the strong gyrase site (SGS) of bacteriophage Mu: localization of determinants required for promoting Mu replication.
    Pato ML; Banerjee M
    Mol Microbiol; 2000 Aug; 37(4):800-10. PubMed ID: 10972802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism.
    Oram M; Travers AA; Howells AJ; Maxwell A; Pato ML
    J Bacteriol; 2006 Jan; 188(2):619-32. PubMed ID: 16385052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini.
    Pato ML; Banerjee M
    Mol Microbiol; 1996 Oct; 22(2):283-92. PubMed ID: 8930913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Mu prophage lacking the central strong gyrase binding site: localization of the block in replication.
    Pato ML; Karlok M; Wall C; Higgins NP
    J Bacteriol; 1995 Oct; 177(20):5937-42. PubMed ID: 7592347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus.
    Morgan GJ; Hatfull GF; Casjens S; Hendrix RW
    J Mol Biol; 2002 Mar; 317(3):337-59. PubMed ID: 11922669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central location of the Mu strong gyrase binding site is obligatory for optimal rates of replicative transposition.
    Pato ML
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7056-60. PubMed ID: 8041745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA gyrase-binding site at the center of the bacteriophage Mu genome is required for efficient replicative transposition.
    Pato ML; Howe MM; Higgins NP
    Proc Natl Acad Sci U S A; 1990 Nov; 87(22):8716-20. PubMed ID: 2174162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components.
    Saariaho AH; Lamberg A; Elo S; Savilahti H
    Virology; 2005 Jan; 331(1):6-19. PubMed ID: 15582649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposable prophage Mu is organized as a stable chromosomal domain of E. coli.
    Saha RP; Lou Z; Meng L; Harshey RM
    PLoS Genet; 2013 Nov; 9(11):e1003902. PubMed ID: 24244182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mu-like Prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens.
    Masignani V; Giuliani MM; Tettelin H; Comanducci M; Rappuoli R; Scarlato V
    Infect Immun; 2001 Apr; 69(4):2580-8. PubMed ID: 11254622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prophage Gifsy-1 Induction in Salmonella enterica Serovar Typhimurium Reduces Persister Cell Formation after Ciprofloxacin Exposure.
    Braetz S; Schwerk P; Figueroa-Bossi N; Tedin K; Fulde M
    Microbiol Spectr; 2023 Aug; 11(4):e0187423. PubMed ID: 37306609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmids derived from Gifsy-1/Gifsy-2, lambdoid prophages contributing to the virulence of Salmonella enterica serovar Typhimurium: implications for the evolution of replication initiation proteins of lambdoid phages and enterobacteria.
    Słomiński B; Całkiewicz J; Golec P; Węgrzyn G; Wróbel B
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1884-1896. PubMed ID: 17526845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA gyrase requirements distinguish the alternate pathways of Mu transposition.
    Sokolsky TD; Baker TA
    Mol Microbiol; 2003 Jan; 47(2):397-409. PubMed ID: 12519191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel non-specific DNA adenine methyltransferases.
    Drozdz M; Piekarowicz A; Bujnicki JM; Radlinska M
    Nucleic Acids Res; 2012 Mar; 40(5):2119-30. PubMed ID: 22102579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
    Asadulghani M; Ogura Y; Ooka T; Itoh T; Sawaguchi A; Iguchi A; Nakayama K; Hayashi T
    PLoS Pathog; 2009 May; 5(5):e1000408. PubMed ID: 19412337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The acidic C-terminal tail of DNA Gyrase of Salmonella enterica serovar Typhi controls DNA relaxation in an acidic environment.
    Sachdeva E; Aggarwal S; Kaur G; Gupta D; Ethayathulla AS; Kaur P
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129728. PubMed ID: 38272423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.