These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15231817)

  • 1. Reverse gyrase is not a prerequisite for hyperthermophilic life.
    Atomi H; Matsumi R; Imanaka T
    J Bacteriol; 2004 Jul; 186(14):4829-33. PubMed ID: 15231817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse gyrase is essential for microbial growth at 95 °C.
    Lipscomb GL; Hahn EM; Crowley AT; Adams MWW
    Extremophiles; 2017 May; 21(3):603-608. PubMed ID: 28331998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Sato T; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2003 Jan; 185(1):210-20. PubMed ID: 12486058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis.
    Kanai T; Takedomi S; Fujiwara S; Atomi H; Imanaka T
    J Biochem; 2010 Mar; 147(3):361-70. PubMed ID: 19887527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence identifying the true gluconeogenic fructose-1,6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles.
    Sato T; Imanaka H; Rashid N; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2004 Sep; 186(17):5799-807. PubMed ID: 15317785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Sato T; Fukui T; Atomi H; Imanaka T
    Appl Environ Microbiol; 2005 Jul; 71(7):3889-99. PubMed ID: 16000802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase.
    Villain P; da Cunha V; Villain E; Forterre P; Oberto J; Catchpole R; Basta T
    Nucleic Acids Res; 2021 Dec; 49(21):12332-12347. PubMed ID: 34755863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance.
    Matsumi R; Manabe K; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Apr; 189(7):2683-91. PubMed ID: 17259314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression profiles and physiological roles of two types of prefoldins from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Danno A; Fukuda W; Yoshida M; Aki R; Tanaka T; Kanai T; Imanaka T; Fujiwara S
    J Mol Biol; 2008 Oct; 382(2):298-311. PubMed ID: 18662698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The linkage between reverse gyrase and hyperthermophiles: a review of their invariable association.
    Heine M; Chandra SB
    J Microbiol; 2009 Jun; 47(3):229-34. PubMed ID: 19557338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea.
    Forterre P; Bergerat A; Lopez-Garcia P
    FEMS Microbiol Rev; 1996 May; 18(2-3):237-48. PubMed ID: 8639331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, expression, and characterization of aminopeptidase P from the hyperthermophilic archaeon Thermococcus sp. strain NA1.
    Lee HS; Kim YJ; Bae SS; Jeon JH; Lim JK; Jeong BC; Kang SG; Lee JH
    Appl Environ Microbiol; 2006 Mar; 72(3):1886-90. PubMed ID: 16517635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA supercoiling and temperature adaptation: A clue to early diversification of life?
    López-García P
    J Mol Evol; 1999 Oct; 49(4):439-52. PubMed ID: 10486002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakarensis.
    Fujiwara S; Aki R; Yoshida M; Higashibata H; Imanaka T; Fukuda W
    Appl Environ Microbiol; 2008 Dec; 74(23):7306-12. PubMed ID: 18835998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures.
    Fukushima E; Shinka Y; Fukui T; Atomi H; Imanaka T
    J Bacteriol; 2007 Oct; 189(19):7134-44. PubMed ID: 17660280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A; Rossi M; Ciaramella M
    Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reverse gyrase: an insight into the role of DNA-topoisomerases.
    Nadal M
    Biochimie; 2007 Apr; 89(4):447-55. PubMed ID: 17316953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse gyrase has heat-protective DNA chaperone activity independent of supercoiling.
    Kampmann M; Stock D
    Nucleic Acids Res; 2004; 32(12):3537-45. PubMed ID: 15247343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding.
    Pulido M; Saito K; Tanaka S; Koga Y; Morikawa M; Takano K; Kanaya S
    Appl Environ Microbiol; 2006 Jun; 72(6):4154-62. PubMed ID: 16751527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.