These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15233038)

  • 1. [Scientific substantiation of experimental determination of the radiation effective dose in an interplanetary flight].
    Petrov VM; Kireeva SA
    Aviakosm Ekolog Med; 2004; 38(2):46-51. PubMed ID: 15233038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized shielding for space radiation protection.
    Wilson JW; Cucinotta FA; Kim MH; Schimmerling W
    Phys Med; 2001; 17 Suppl 1():67-71. PubMed ID: 11770540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human exposure to space radiation: role of primary and secondary particles.
    Trovati S; Ballarini F; Battistoni G; Cerutti F; Fassò A; Ferrari A; Gadioli E; Garzelli MV; Mairani A; Ottolenghi A; Paretzke HG; Parini V; Pelliccioni M; Pinsky L; Sala PR; Scannicchio D; Zankl M
    Radiat Prot Dosimetry; 2006; 122(1-4):362-6. PubMed ID: 17151013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Radiation risk to cosmonauts in a flight to Mars].
    Shafirkin AV; Grigor'ev IuG; Kolomenskiĭ AV
    Aviakosm Ekolog Med; 2004; 38(2):3-14. PubMed ID: 15233030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Substantiation of radiation quality coefficient dependence on LET in application to the assessment of early radiobiological effects].
    Shafirkin AV; Fedorenko BS
    Aviakosm Ekolog Med; 1998; 32(2):4-9. PubMed ID: 9661768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [An algorithm to compute the radiation risk during interplanetary space flights].
    Shafirkin AV; Venediktova VP; Kolomenskiĭ AV; Petrov VM; Shurmakov VA
    Aviakosm Ekolog Med; 1999; 33(3):56-61. PubMed ID: 10485036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The methodology of establishing the radiation hazard to cosmonauts on long-term mission based on the generalized dosimetric functional].
    Shafirkin AV; Grigoriev IuG
    Aviakosm Ekolog Med; 1999; 33(2):55-9. PubMed ID: 10399558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Method of calculating self-shielding of the human critical organs in the anthropomorphic phantom].
    Kartashov DA; Kolomenskiĭ AV; Shurshakov VA
    Aviakosm Ekolog Med; 2004; 38(2):52-6. PubMed ID: 15233039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Space radiation doses in the anthropomorphous phantom in space experiment "Matryeshka-R" and spacesuit "Orlan-M" during extravehicular activity].
    Kartashov DA; Petrov VM; Kolomenskiĭ AV; Akatov IuA; Shurshakov VA
    Aviakosm Ekolog Med; 2010; 44(2):3-8. PubMed ID: 20799652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Possible directions in improving the criteria of radiation safety for space flights].
    Kovalev EE; Petrov VM; Sakovich VA; Sychkov MA
    Kosm Biol Aviakosm Med; 1983; 17(2):8-14. PubMed ID: 6343720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and biological organ dosimetry analysis for international space station astronauts.
    Cucinotta FA; Kim MH; Willingham V; George KA
    Radiat Res; 2008 Jul; 170(1):127-38. PubMed ID: 18582161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Problems of radiation safety of a Martian expedition crew].
    Petrov VM; Bengin VV; Kolomenskiĭ AV; Shurshakov VA
    Aviakosm Ekolog Med; 2003; 37(5):50-6. PubMed ID: 14730734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose distribution in the Russian Segment of the International Space Station.
    Hajek M; Berger T; Fugger M; Fürstner M; Vana N; Akatov Y; Shurshakov V; Arkhangelsky V
    Radiat Prot Dosimetry; 2006; 120(1-4):446-9. PubMed ID: 16606660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of passive personal neutron dosemeters to determine the neutron dose equivalent component of radiation fields in spacecraft.
    Bartlett DT; Hager LG; Tanner RJ
    Radiat Prot Dosimetry; 2004; 110(1-4):405-9. PubMed ID: 15353682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active magnetic radiation shielding system analysis and key technologies.
    Washburn SA; Blattnig SR; Singleterry RC; Westover SC
    Life Sci Space Res (Amst); 2015 Jan; 4():22-34. PubMed ID: 26177618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose and dose rate effectiveness of space radiation.
    Schimmerling W; Cucinotta FA
    Radiat Prot Dosimetry; 2006; 122(1-4):349-53. PubMed ID: 17169950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medical mitigation strategies for acute radiation exposure during spaceflight.
    Epelman S; Hamilton DR
    Aviat Space Environ Med; 2006 Feb; 77(2):130-9. PubMed ID: 16491581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters.
    Bottollier-Depois JF; Trompier F; Clairand I; Spurny F; Bartlett D; Beck P; Lewis B; Lindborg L; O'Sullivan D; Roos H; Tommasino L
    Radiat Prot Dosimetry; 2004; 110(1-4):411-5. PubMed ID: 15353683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.