These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 15233542)
1. Determination of aggregation thresholds of UV absorbing anionic surfactants by frontal analysis continuous capillary electrophoresis. Le Saux T; Varenne A; Gareil P J Chromatogr A; 2004 Jun; 1038(1-2):275-82. PubMed ID: 15233542 [TBL] [Abstract][Full Text] [Related]
2. Determination of the aggregation threshold of non-UV-absorbing, neutral or charged surfactants by frontal- and vacancy-frontal analysis continuous capillary electrophoresis. Le Saux T; Varenne A; Gareil P J Chromatogr A; 2004 Jul; 1041(1-2):219-26. PubMed ID: 15281272 [TBL] [Abstract][Full Text] [Related]
3. Determination of critical micelle concentration of surfactants by capillary electrophoresis. Lin CE J Chromatogr A; 2004 May; 1037(1-2):467-78. PubMed ID: 15214683 [TBL] [Abstract][Full Text] [Related]
4. CE frontal analysis employing contactless conductivity detection for determination of CMCs of non-UV absorbing charged surfactants. Jensen H; Østergaard J; Hansen SH Electrophoresis; 2007 Aug; 28(17):2975-80. PubMed ID: 17661318 [TBL] [Abstract][Full Text] [Related]
5. Separation of anionic surfactants using aqueous and nonaqueous capillary electrophoresis. Heinig K; Vogt C; Werner G J Capillary Electrophor; 1996; 3(5):261-70. PubMed ID: 9384732 [TBL] [Abstract][Full Text] [Related]
6. Mixed cationic/anionic surfactants for semipermanent wall coatings in capillary electrophoresis. Wang C; Lucy CA Electrophoresis; 2004 Mar; 25(6):825-32. PubMed ID: 15004842 [TBL] [Abstract][Full Text] [Related]
7. Determination of the Critical Micelle Concentration of Neutral and Ionic Surfactants with Fluorometry, Conductometry, and Surface Tension-A Method Comparison. Scholz N; Behnke T; Resch-Genger U J Fluoresc; 2018 Jan; 28(1):465-476. PubMed ID: 29332160 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium analysis of reactions between aromatic anions and nonionic surfactant micelles by capillary zone electrophoresis. Takayanagi T; Motomizu S J Chromatogr A; 1999 Aug; 853(1-2):55-61. PubMed ID: 10486712 [TBL] [Abstract][Full Text] [Related]
9. Rapid determination of surfactant critical micelle concentrations using pressure-driven flow with capillary electrophoresis instrumentation. Stanley FE; Warner AM; Schneiderman E; Stalcup AM J Chromatogr A; 2009 Nov; 1216(47):8431-4. PubMed ID: 19836753 [TBL] [Abstract][Full Text] [Related]
10. Effect of drying on the degradation of cationic surfactants and separation performance in capillary zone electrophoresis of inorganic anions. Harakuwe AH; Haddad PR; Davies NW J Chromatogr A; 1999 Nov; 863(1):81-7. PubMed ID: 10591466 [TBL] [Abstract][Full Text] [Related]
11. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions. Wu Y; Chen M; Fang Y; Zhu M J Chromatogr A; 2017 Mar; 1489():134-142. PubMed ID: 28189259 [TBL] [Abstract][Full Text] [Related]
12. Phosphated surfactants as pseudostationary phase for micellar electrokinetic chromatography: separation of polycyclic aromatic hydrocarbons. Akbay C; Shamsi SA; Warner IM Electrophoresis; 1997 Feb; 18(2):253-9. PubMed ID: 9080134 [TBL] [Abstract][Full Text] [Related]
13. Effect of anionic surfactants on grafting density of gelatin modified with PDMS-E. Xu J; Xu Z; Qiao CD; Li TD Colloids Surf B Biointerfaces; 2014 Feb; 114():310-5. PubMed ID: 24216622 [TBL] [Abstract][Full Text] [Related]
14. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis. Fukai N; Kitagawa S; Ohtani H Electrophoresis; 2017 Jul; 38(13-14):1724-1729. PubMed ID: 28418580 [TBL] [Abstract][Full Text] [Related]
15. Dual-opposite injection capillary electrophoresis for the determination of anionic and cationic homologous surfactants in a single run. Priego-Capote F; Luque de Castro MD Electrophoresis; 2005 Jun; 26(12):2283-92. PubMed ID: 15920780 [TBL] [Abstract][Full Text] [Related]
16. Adsorption and aggregation properties of multichain anionic amphiphilic oligomers consisting of dodecyl acrylamide and sodium acrylate. Yoshimura T; Yoshida H; Esumi K J Oleo Sci; 2013; 62(9):673-80. PubMed ID: 24005012 [TBL] [Abstract][Full Text] [Related]
17. Semi-permanent surfactant coatings for inorganic anion analysis in capillary electrophoresis. Baryla NE; Lucy CA J Chromatogr A; 2002 May; 956(1-2):271-7. PubMed ID: 12108661 [TBL] [Abstract][Full Text] [Related]
18. Electroosmotic flow reversal for the determination of inorganic anions by capillary electrophoresis with methanol-water buffers. Diress AG; Lucy CA J Chromatogr A; 2004 Feb; 1027(1-2):185-91. PubMed ID: 14971502 [TBL] [Abstract][Full Text] [Related]
19. Chiral glycosidic surfactants for enantiomeric separation in capillary electrophoresis. El Rassi Z J Chromatogr A; 2000 Apr; 875(1-2):207-33. PubMed ID: 10839145 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the use of anionic and cationic surfactants for the separation of steroids based on MEKC and sweeping-MEKC modes. Shen HJ; Lin CH Electrophoresis; 2006 Mar; 27(5-6):1255-62. PubMed ID: 16440398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]