These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 152337)

  • 1. Minocycline-induced loss of potassium from erythrocytes: identification of a family with an augmented response.
    Kornguth ML; Kunin CM
    J Infect Dis; 1978 Oct; 138(4):455-62. PubMed ID: 152337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of minocycline on potassium leakage from red cells: a study of the genetics and relationship to vestibular adverse reactions.
    Lannigan BG; Evans DA
    J Med Genet; 1982 Oct; 19(5):354-9. PubMed ID: 6292426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erythrocyte membrane Na+ and K+ activated adenosine triphosphatase in protein-calorie malnutrition.
    Kaplay SS
    Am J Clin Nutr; 1978 Apr; 31(4):579-84. PubMed ID: 147623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection by tetracyclines against ion transport disruption caused by nystatin in human airway epithelial cells.
    Ito Y; Nakayama S; Son M; Kume H; Yamaki K
    Toxicol Appl Pharmacol; 2001 Dec; 177(3):232-7. PubMed ID: 11749122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells.
    Kregenow FM; Hoffman JF
    J Gen Physiol; 1972 Oct; 60(4):406-29. PubMed ID: 5074809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the mechanism of inhibition of the red cell metabolism by cardiac glycosides.
    Okonkwo PO; Longenecker G; Askari A
    J Pharmacol Exp Ther; 1975 Jul; 194(1):244-54. PubMed ID: 125326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of ATP-analogues possessing a blocked gamma-phosphate group with the sodium pump in human red cells.
    Simons TJ
    J Physiol; 1975 Jan; 244(3):731-9. PubMed ID: 124351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry of sodium and potassium transport in erythrocytes from patients with myotonic muscular dystrophy.
    Hull KL; Roses AD
    J Physiol; 1976 Jan; 254(1):169-81. PubMed ID: 129563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of some minor activities accompanying a preparation of sodium-plus-potassium ion-stimulated adenosine triphosphatase from pig brain.
    Fujita M; Nagano K; Mizuno N; Tashima Y; Nakao T; Nakao M
    Biochem J; 1968 Jan; 106(1):113-21. PubMed ID: 4238488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes.
    Rega AF; Richards DE; Garrahan PJ
    Biochem J; 1973 Sep; 136(1):185-94. PubMed ID: 4272534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of valinomycin on potassium and sodium permeability of HK and LK sheep red cells.
    Tosteson DC; Cook P; Andreoli T; Tieffenberg M
    J Gen Physiol; 1967 Dec; 50(11):2513-25. PubMed ID: 4230916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of external sodium ions on the sodium pump in erythrocytes.
    Priestland RN; Whittam R
    Biochem J; 1968 Sep; 109(3):369-74. PubMed ID: 4234831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL; Willis JS
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetracycline-induced inhibition of Na+ transport in the toad urinary bladder.
    Guzzo J; Cox M; Kelley AB; Singer I
    Am J Physiol; 1978 Oct; 235(4):F359-66. PubMed ID: 100018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes.
    Marchesi VT; Palade GE
    J Cell Biol; 1967 Nov; 35(2):385-404. PubMed ID: 4228435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative activity of tetracycline, doxycycline and minocycline against Haemophilus].
    Dabernat H; Delmas C; Bauriaud R; Lareng MB
    Pathol Biol (Paris); 1983 May; 31(5):413-8. PubMed ID: 6353333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of in vitro resistance of Staphylococcus aureus to tetracycline, doxycycline, and minocycline with in vivo use.
    Lewis SA; Altemeier WA
    Chemotherapy; 1976; 22(5):319-23. PubMed ID: 947710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.