These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15233789)

  • 21. Improved sequence-based prediction of protein secondary structures by combining vacuum-ultraviolet circular dichroism spectroscopy with neural network.
    Matsuo K; Watanabe H; Gekko K
    Proteins; 2008 Oct; 73(1):104-12. PubMed ID: 18395813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopic characterization of selected beta- sheet hairpin models.
    Hilario J; Kubelka J; Syud FA; Gellman SH; Keiderling TA
    Biopolymers; 2002; 67(4-5):233-6. PubMed ID: 12012436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structure of the lac repressor headpiece. Possibilities and limitations of a joint infrared and circular dichroism study.
    Schnarr M; Maurizot JC
    Eur J Biochem; 1982 Nov; 128(2-3):515-20. PubMed ID: 6759121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PDB2CD: a web-based application for the generation of circular dichroism spectra from protein atomic coordinates.
    Mavridis L; Janes RW
    Bioinformatics; 2017 Jan; 33(1):56-63. PubMed ID: 27651482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution.
    Dong A; Kendrick B; Kreilgârd L; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1997 Nov; 347(2):213-20. PubMed ID: 9367527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein concentration is not an absolute prerequisite for the determination of secondary structure from circular dichroism spectra: a new scaling method.
    Raussens V; Ruysschaert JM; Goormaghtigh E
    Anal Biochem; 2003 Aug; 319(1):114-21. PubMed ID: 12842114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circular dichroism and Fourier-transform infrared spectroscopic studies on T-cell epitopic peptide fragments of influenza virus hemagglutinin.
    Holly S; Majer Z; Tóth GK; Váradi G; Rajnavölgyi E; Laczkó I; Hollósi M
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1247-54. PubMed ID: 7686750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An infrared and circular dichroism combined approach to the analysis of protein secondary structure.
    Sarver RW; Krueger WC
    Anal Biochem; 1991 Nov; 199(1):61-7. PubMed ID: 1807162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Principal component analysis of Fourier transform infrared and/or circular dichroism spectra of proteins applied in a calibration of protein secondary structure.
    Pribić R
    Anal Biochem; 1994 Nov; 223(1):26-34. PubMed ID: 7695098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure.
    Chi Z; Chen XG; Holtz JS; Asher SA
    Biochemistry; 1998 Mar; 37(9):2854-64. PubMed ID: 9485436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data.
    Whitmore L; Woollett B; Miles AJ; Janes RW; Wallace BA
    Structure; 2010 Oct; 18(10):1267-9. PubMed ID: 20947015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral magnitude effects on the analyses of secondary structure from circular dichroism spectroscopic data.
    Miles AJ; Whitmore L; Wallace BA
    Protein Sci; 2005 Feb; 14(2):368-74. PubMed ID: 15659369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra.
    Pancoska P; Janota V; Keiderling TA
    Anal Biochem; 1999 Feb; 267(1):72-83. PubMed ID: 9918657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired interactions studied by vibrational circular dichroism.
    Urbanová M
    Chirality; 2009; 21 Suppl 1():E215-30. PubMed ID: 19937957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Featuring amyloids with Fourier transform infrared and circular dichroism spectroscopies.
    Calero M; Gasset M
    Methods Mol Biol; 2012; 849():53-68. PubMed ID: 22528083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved estimation of the secondary structures of proteins by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Yonehara R; Gekko K
    J Biochem; 2005 Jul; 138(1):79-88. PubMed ID: 16046451
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Implementation of an FTIR calibration curve for fast and objective determination of changes in protein secondary structure during formulation development.
    Vonhoff S; Condliffe J; Schiffter H
    J Pharm Biomed Anal; 2010 Jan; 51(1):39-45. PubMed ID: 19726151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotope-labeled vibrational circular dichroism studies of calmodulin and its interactions with ligands.
    Pandyra AA; Yamniuk AP; Andrushchenko VV; Wieser H; Vogel HJ
    Biopolymers; 2005 Dec; 79(5):231-7. PubMed ID: 16013055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure analysis of unfolded peptides I: vibrational circular dichroism spectroscopy.
    Schweitzer-Stenner R; Soffer JB; Verbaro D
    Methods Mol Biol; 2012; 895():271-313. PubMed ID: 22760325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis.
    Sreerama N; Venyaminov SY; Woody RW
    Anal Biochem; 2000 Dec; 287(2):243-51. PubMed ID: 11112270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.