BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 15233931)

  • 1. Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia.
    Scott AS; Eberhard A; Ofir D; Benchetrit G; Dinh TP; Calabrese P; Lesiuk V; Perrault H
    Auton Neurosci; 2004 May; 112(1-2):60-8. PubMed ID: 15233931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration.
    Wilhelm FH; Grossman P; Coyle MA
    Biomed Sci Instrum; 2004; 40():317-24. PubMed ID: 15133978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis predicts that respiratory sinus arrhythmia does not accurately measure efferent vagal activity during anesthesia.
    Dexter F; Ben-Haim S
    J Theor Biol; 1994 Jul; 169(2):133-41. PubMed ID: 7934078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Spectrum analysis of the variability of heart rate in athletes].
    Costa O; Freitas J; Puig J; Carvalho MJ; Freitas A; Ramos J; Puga N; Lomba I; Fernandes P; de Freitas F
    Rev Port Cardiol; 1991 Jan; 10(1):23-8. PubMed ID: 2059462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac vagal control and respiratory sinus arrhythmia during hypercapnia in humans.
    Brown SJ; Mundel T; Brown JA
    J Physiol Sci; 2007 Dec; 57(6):337-42. PubMed ID: 17996126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between heart rate variability and pulmonary gas exchange efficiency in humans.
    Sin PY; Webber MR; Galletly DC; Ainslie PN; Brown SJ; Willie CK; Sasse A; Larsen PD; Tzeng YC
    Exp Physiol; 2010 Jul; 95(7):788-97. PubMed ID: 20382666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do the high-frequency indexes of HRV provide a faithful assessment of cardiac vagal tone? A critical theoretical evaluation.
    Pyetan E; Akselrod S
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):777-83. PubMed ID: 12814244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Heart rate variability and physical exercise. Current status].
    Hottenrott K; Hoos O; Esperer HD
    Herz; 2006 Sep; 31(6):544-52. PubMed ID: 17036185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a respiratory component, similar to mammalian respiratory sinus arrhythmia, in the heart rate variability signal from the rattlesnake, Crotalus durissus terrificus.
    Campbell HA; Leite CA; Wang T; Skals M; Abe AS; Egginton S; Rantin FT; Bishop CM; Taylor EW
    J Exp Biol; 2006 Jul; 209(Pt 14):2628-36. PubMed ID: 16809454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions.
    Grossman P; Taylor EW
    Biol Psychol; 2007 Feb; 74(2):263-85. PubMed ID: 17081672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of patterned breathing and continuous positive airway pressure on cardiovascular regulation in healthy volunteers.
    Török T; Rudas L; Kardos A; Paprika D
    Acta Physiol Hung; 1997-1998; 85(1):1-10. PubMed ID: 9530431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships among spectral measures of baroreflex sensitivity and indices of cardiac vagal control.
    Merritt MM; Sollers JJ; Evans MK; Zonderman AB; Thayer JF
    Biomed Sci Instrum; 2003; 39():193-8. PubMed ID: 12724893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and interpretation of respiratory sinus arrhythmia measures in psychosomatic medicine: practice against better evidence?
    Ritz T; Dahme B
    Psychosom Med; 2006; 68(4):617-27. PubMed ID: 16868273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underestimation of cardiac vagal control in regular exercisers by 24-hour heart rate variability recordings.
    van Lien R; Goedhart A; Kupper N; Boomsma D; Willemsen G; de Geus EJ
    Int J Psychophysiol; 2011 Sep; 81(3):169-76. PubMed ID: 21723331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomic nervous system control of the heart: endurance exercise training.
    Shi X; Stevens GH; Foresman BH; Stern SA; Raven PB
    Med Sci Sports Exerc; 1995 Oct; 27(10):1406-13. PubMed ID: 8531612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MATLAB toolbox for correcting within-individual effects of respiration rate and tidal volume on respiratory sinus arrhythmia during variable breathing.
    Schulz SM; Ayala E; Dahme B; Ritz T
    Behav Res Methods; 2009 Nov; 41(4):1121-6. PubMed ID: 19897819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric description of cardiac vagal control.
    Pyetan E; Toledo E; Zoran O; Akselrod S
    Auton Neurosci; 2003 Nov; 109(1-2):42-52. PubMed ID: 14638312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human ventilatory efficiency and respiratory sinus arrhythmia during head-up tilt.
    Brown SJ; Bryant M; Mundel T; Stannard SR
    J Physiol Pharmacol; 2008 Dec; 59(4):771-80. PubMed ID: 19212010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studying noninvasive indices of vagal control: the need for respiratory control and the problem of target specificity.
    Ritz T
    Biol Psychol; 2009 Feb; 80(2):158-68. PubMed ID: 18775468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incidence, timing, and characteristics of acute changes in heart rate during ongoing circumferential pulmonary vein isolation.
    Ketels S; Houben R; Van Beeumen K; Tavernier R; Duytschaever M
    Europace; 2008 Dec; 10(12):1406-14. PubMed ID: 18936041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.