These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15234200)

  • 1. Mathematical modeling of regulatory mechanisms in yeast colony development.
    Walther T; Reinsch H; Grosse A; Ostermann K; Deutsch A; Bley T
    J Theor Biol; 2004 Aug; 229(3):327-38. PubMed ID: 15234200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applying dimorphic yeasts as model organisms to study mycelial growth: part 2. Use of mathematical simulations to identify different construction principles in yeast colonies.
    Walther T; Reinsch H; Ostermann K; Deutsch A; Bley T
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):21-31. PubMed ID: 20549519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applying dimorphic yeasts as model organisms to study mycelial growth: part 1. Experimental investigation of the spatio-temporal development of filamentous yeast colonies.
    Walther T; Reinsch H; Weber P; Ostermann K; Deutsch A; Bley T
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):13-20. PubMed ID: 20549520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in transport activities of vacuoles of the yeast Yarrowia lipolytica during its growth on glucose.
    Kulakovskaya TV; Matyashova RN; Shishkanova NV; Finogenova TV; Okorokov LA
    Yeast; 1993 Feb; 9(2):121-6. PubMed ID: 8385405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model.
    Hellweger FL; Kianirad E
    J Theor Biol; 2007 Dec; 249(3):554-65. PubMed ID: 17900626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INDISIM, an individual-based discrete simulation model to study bacterial cultures.
    Ginovart M; López D; Valls J
    J Theor Biol; 2002 Jan; 214(2):305-19. PubMed ID: 11812180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A logistic cellular automaton for simulating tumor growth].
    Hu R; Ruan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):79-82. PubMed ID: 12744169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation.
    Beopoulos A; Chardot T; Nicaud JM
    Biochimie; 2009 Jun; 91(6):692-6. PubMed ID: 19248816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb.
    Alber M; Glimm T; Hentschel HG; Kazmierczak B; Zhang YT; Zhu J; Newman SA
    Bull Math Biol; 2008 Feb; 70(2):460-83. PubMed ID: 17965922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cellular automata model of tumor-immune system interactions.
    Mallet DG; De Pillis LG
    J Theor Biol; 2006 Apr; 239(3):334-50. PubMed ID: 16169016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination of cell growth and cell division: a mathematical modeling study.
    Qu Z; Weiss JN; MacLellan WR
    J Cell Sci; 2004 Aug; 117(Pt 18):4199-207. PubMed ID: 15280433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation.
    Walker D; Wood S; Southgate J; Holcombe M; Smallwood R
    J Theor Biol; 2006 Oct; 242(3):774-89. PubMed ID: 16765384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mathematical model of transitional processes in the chemostat culture of microorganisms].
    Drozdov-Tikhomirov LN; Rakhimova NT
    Mol Biol (Mosk); 1985; 19(3):751-9. PubMed ID: 3897832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell division theory and individual-based modeling of microbial lag: part II. Modeling lag phenomena induced by temperature shifts.
    Dens EJ; Bernaerts K; Standaert AR; Kreft JU; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):319-32. PubMed ID: 15913823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of xylitol production by the yeast Candida mogii.
    Tochampa W; Sirisansaneeyakul S; Vanichsriratana W; Srinophakun P; Bakker HH; Chisti Y
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):175-83. PubMed ID: 16215727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source.
    Athenstaedt K; Jolivet P; Boulard C; Zivy M; Negroni L; Nicaud JM; Chardot T
    Proteomics; 2006 Mar; 6(5):1450-9. PubMed ID: 16470660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-uptake systems in Yarrowia lipolytica cells grown under alkaline conditions.
    Zvyagilskaya R; Parchomenko O; Persson BL
    IUBMB Life; 2000 Aug; 50(2):151-5. PubMed ID: 11185962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of a tropical marine yeast Yarrowia lipolytica NCIM 3589 on bromoalkanes: relevance of cell size and cell surface properties.
    Vatsal A; Zinjarde SS; Kumar AR
    Yeast; 2011 Oct; 28(10):721-32. PubMed ID: 21905092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of oxygen transport on 3-d human mesenchymal stem cell metabolic activity in perfusion and static cultures: experiments and mathematical model.
    Zhao F; Pathi P; Grayson W; Xing Q; Locke BR; Ma T
    Biotechnol Prog; 2005; 21(4):1269-80. PubMed ID: 16080711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.