BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15234269)

  • 1. Molecular engineering of PQQGDH and its applications.
    Igarashi S; Okuda J; Ikebukuro K; Sode K
    Arch Biochem Biophys; 2004 Aug; 428(1):52-63. PubMed ID: 15234269
    [No Abstract]   [Full Text] [Related]  

  • 2. Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution.
    Hamamatsu N; Suzumura A; Nomiya Y; Sato M; Aita T; Nakajima M; Husimi Y; Shibanaka Y
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):607-17. PubMed ID: 16944137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering PQQ glucose dehydrogenase with improved substrate specificity. Site-directed mutagenesis studies on the active center of PQQ glucose dehydrogenase.
    Igarashi S; Hirokawa T; Sode K
    Biomol Eng; 2004 Apr; 21(2):81-9. PubMed ID: 15113562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells.
    Durand F; Stines-Chaumeil C; Flexer V; André I; Mano N
    Biochem Biophys Res Commun; 2010 Nov; 402(4):750-4. PubMed ID: 21036156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wiring of PQQ-dehydrogenases.
    Laurinavicius V; Razumiene J; Ramanavicius A; Ryabov AD
    Biosens Bioelectron; 2004 Dec; 20(6):1217-22. PubMed ID: 15556370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface charge engineering of PQQ glucose dehydrogenase for downstream processing.
    Koh H; Igarashi S; Sode K
    Biotechnol Lett; 2003 Oct; 25(20):1695-701. PubMed ID: 14626410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring of PQQ-dependent glucose dehydrogenase substrate specificity for its potential use in biocatalysis and bioanalysis.
    Streďanský M; Monošík R; Mastihuba V; Sturdík E
    Appl Biochem Biotechnol; 2013 Oct; 171(4):1032-41. PubMed ID: 23934069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of the quinoprotein glucose dehydrogenase of Escherichia coli; the role of His262 in PQQ binding and determination of substrate specificity.
    Cozier GE; Salleh RA; Anthony C
    Biochem Soc Trans; 1998 Aug; 26(3):S270. PubMed ID: 9765989
    [No Abstract]   [Full Text] [Related]  

  • 9. Chromium hexacyanoferrate modified biosensor based on PQQ-dependent glucose dehydrogenase.
    Tseng TF; Yang YL; Lou SL
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2681-4. PubMed ID: 18002547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of mutant water-soluble PQQ glucose dehydrogenases with altered K(m) values--site-directed mutagenesis studies on the putative active site.
    Igarashi S; Ohtera T; Yoshida H; Witarto AB; Sode K
    Biochem Biophys Res Commun; 1999 Nov; 264(3):820-4. PubMed ID: 10544015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PQQ glucose dehydrogenase with novel electron transfer ability.
    Okuda J; Sode K
    Biochem Biophys Res Commun; 2004 Feb; 314(3):793-7. PubMed ID: 14741705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering CRISPR interference system to enhance the production of pyrroloquinoline quinone in Klebsiella pneumonia.
    Mi Z; Sun Z; Huang Z; Zhao P; Li Q; Tian P
    Lett Appl Microbiol; 2020 Sep; 71(3):242-250. PubMed ID: 32394472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of quaternary structure of water-soluble quinoprotein glucose dehydrogenase.
    Igarashi S; Sode K
    Mol Biotechnol; 2003 Jun; 24(2):97-104. PubMed ID: 12746550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the metabolic engineering of the direct oxidation pathway for extraction of phosphate from ore has generated preliminary evidence for PQQ biosynthesis in Escherichia coli as well as a possible role for the highly conserved region of quinoprotein dehydrogenases.
    Goldstein A; Lester T; Brown J
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):266-71. PubMed ID: 12686144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of DNA aptamers that inhibit enzymatic activity of PQQGDH and its application.
    Ikebukuro K; Takase M; Sode K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):403-4. PubMed ID: 18029757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and mechanism of soluble quinoprotein glucose dehydrogenase.
    Oubrie A; Rozeboom HJ; Kalk KH; Olsthoorn AJ; Duine JA; Dijkstra BW
    EMBO J; 1999 Oct; 18(19):5187-94. PubMed ID: 10508152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a chimeric pyrroloquinoline quinone glucose dehydrogenase: improvement of EDTA tolerance, thermal stability and substrate specificity.
    Yoshida H; Kojima K; Witarto AB; Sode K
    Protein Eng; 1999 Jan; 12(1):63-70. PubMed ID: 10065712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid residues interacting with both the bound quinone and coenzyme, pyrroloquinoline quinone, in Escherichia coli membrane-bound glucose dehydrogenase.
    Mustafa G; Ishikawa Y; Kobayashi K; Migita CT; Elias MD; Nakamura S; Tagawa S; Yamada M
    J Biol Chem; 2008 Aug; 283(32):22215-21. PubMed ID: 18550551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of mutant glucose dehydrogenases with increasing stability.
    Yamamoto K; Nagao T; Makino Y; Urabe I; Okada H
    Ann N Y Acad Sci; 1990; 613():362-5. PubMed ID: 2075979
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.