These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15234489)

  • 21. Ultrashort echo time magnetization transfer (UTE-MT) imaging of cortical bone.
    Chang EY; Bae WC; Shao H; Biswas R; Li S; Chen J; Patil S; Healey R; D'Lima DD; Chung CB; Du J
    NMR Biomed; 2015 Jul; 28(7):873-80. PubMed ID: 25981914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial distribution of tissue level properties in a human femoral cortical bone.
    Rohrbach D; Lakshmanan S; Peyrin F; Langer M; Gerisch A; Grimal Q; Laugier P; Raum K
    J Biomech; 2012 Aug; 45(13):2264-70. PubMed ID: 22776686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study.
    Vogl F; Bernet B; Bolognesi D; Taylor WR
    PLoS One; 2017; 12(9):e0182617. PubMed ID: 28880868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy.
    Hofman T; Raum K; Leguerney I; Saïed A; Peyrin F; Vico L; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1307-11. PubMed ID: 16782152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation.
    Haïat G; Padilla F; Peyrin F; Laugier P
    J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasonic velocity dispersion in bovine cortical bone: an experimental study.
    Haïat G; Sasso M; Naili S; Matsukawa M
    J Acoust Soc Am; 2008 Sep; 124(3):1811-21. PubMed ID: 19045671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The evaluation of cortical bone remodeling with a new ultrasonic technique.
    Zimmerman MC; Meunier A; Katz JL; Christel P
    IEEE Trans Biomed Eng; 1990 May; 37(5):433-41. PubMed ID: 2188899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties.
    Grimal Q; Raum K; Gerisch A; Laugier P
    Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft.
    Cooper DM; Thomas CD; Clement JG; Turinsky AL; Sensen CW; Hallgrímsson B
    Bone; 2007 Apr; 40(4):957-65. PubMed ID: 17223618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials.
    Bossy E; Talmant M; Defontaine M; Patat F; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):71-9. PubMed ID: 14995018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a new ultrasound device designed for measuring cortical porosity at the human tibia: A phantom study.
    Gräsel M; Glüer CC; Barkmann R
    Ultrasonics; 2017 Apr; 76():183-191. PubMed ID: 28107676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visualization of localized elastic properties in human tooth and jawbone as revealed by scanning acoustic microscopy.
    Shelke A; Blume M; Mularczyk M; Landes C; Sader R; Bereiter-Hahn J
    Ultrasound Med Biol; 2013 May; 39(5):853-9. PubMed ID: 23465135
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pore network microarchitecture influences human cortical bone elasticity during growth and aging.
    Bala Y; Lefèvre E; Roux JP; Baron C; Lasaygues P; Pithioux M; Kaftandjian V; Follet H
    J Mech Behav Biomed Mater; 2016 Oct; 63():164-173. PubMed ID: 27389322
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrasonic characterization of human trabecular bone microstructure.
    Hakulinen MA; Day JS; Töyräs J; Weinans H; Jurvelin JS
    Phys Med Biol; 2006 Mar; 51(6):1633-48. PubMed ID: 16510968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements.
    Lakshmanan S; Bodi A; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1560-70. PubMed ID: 17703659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastic anisotropy and off-axis ultrasonic velocity distribution in human cortical bone.
    Chung DH; Dechow PC
    J Anat; 2011 Jan; 218(1):26-39. PubMed ID: 21073453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scanning acoustic microscopy study of human cortical and trabecular bone.
    Bumrerraj S; Katz JL
    Ann Biomed Eng; 2001 Dec; 29(12):1034-42. PubMed ID: 11853252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity.
    Bousson V; Bergot C; Meunier A; Barbot F; Parlier-Cuau C; Laval-Jeantet AM; Laredo JD
    Radiology; 2000 Oct; 217(1):179-87. PubMed ID: 11012442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity.
    Bossy E; Talmant M; Peyrin F; Akrout L; Cloetens P; Laugier P
    J Bone Miner Res; 2004 Sep; 19(9):1548-56. PubMed ID: 15312257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens.
    Haïat G; Padilla F; Cleveland RO; Laugier P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):39-51. PubMed ID: 16471431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.