BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15234552)

  • 1. Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins.
    Saito H; Lund-Katz S; Phillips MC
    Prog Lipid Res; 2004 Jul; 43(4):350-80. PubMed ID: 15234552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.
    Tanaka M; Dhanasekaran P; Nguyen D; Ohta S; Lund-Katz S; Phillips MC; Saito H
    Biochemistry; 2006 Aug; 45(34):10351-8. PubMed ID: 16922511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I.
    Tanaka M; Koyama M; Dhanasekaran P; Nguyen D; Nickel M; Lund-Katz S; Saito H; Phillips MC
    Biochemistry; 2008 Feb; 47(7):2172-80. PubMed ID: 18205410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E.
    Patel AB; Khumsupan P; Narayanaswami V
    Biochemistry; 2010 Mar; 49(8):1766-75. PubMed ID: 20073510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Domain structure and lipid interaction in human apolipoproteins A-I and E, a general model.
    Saito H; Dhanasekaran P; Nguyen D; Holvoet P; Lund-Katz S; Phillips MC
    J Biol Chem; 2003 Jun; 278(26):23227-32. PubMed ID: 12709430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of helix 1' enhances the lipid binding activity of apoE3 N-terminal domain.
    Redmond KA; Murphy C; Narayanaswami V; Kiss RS; Hauser P; Guigard E; Kay CM; Ryan RO
    FEBS J; 2006 Feb; 273(3):558-67. PubMed ID: 16420479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence studies of lipid association-induced conformational adaptations of an exchangeable amphipathic apolipoprotein.
    Narayanaswami V; Frolov A; Schroeder F; Oikawa K; Kay CM; Ryan RO
    Arch Biochem Biophys; 1996 Oct; 334(1):143-50. PubMed ID: 8837749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High density lipoprotein structure-function and role in reverse cholesterol transport.
    Lund-Katz S; Phillips MC
    Subcell Biochem; 2010; 51():183-227. PubMed ID: 20213545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apolipophorin III: role model apolipoprotein.
    Weers PM; Ryan RO
    Insect Biochem Mol Biol; 2006 Apr; 36(4):231-40. PubMed ID: 16551537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of human apolipoprotein A-IV: a distinct domain architecture among exchangeable apolipoproteins with potential functional implications.
    Pearson K; Saito H; Woods SC; Lund-Katz S; Tso P; Phillips MC; Davidson WS
    Biochemistry; 2004 Aug; 43(33):10719-29. PubMed ID: 15311933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopy of human apolipoprotein fragments in SDS/D2O: relative lipid-binding affinities and a novel amide I assignment.
    Shaw RA; Buchko GW; Wang G; Rozek A; Treleaven WD; Mantsch HH; Cushley RJ
    Biochemistry; 1997 Nov; 36(47):14531-8. PubMed ID: 9398171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E.
    Tamamizu-Kato S; Cohen JK; Drake CB; Kosaraju MG; Drury J; Narayanaswami V
    Biochemistry; 2008 May; 47(18):5225-34. PubMed ID: 18407659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monomeric, biologically active, full-length human apolipoprotein E.
    Zhang Y; Vasudevan S; Sojitrawala R; Zhao W; Cui C; Xu C; Fan D; Newhouse Y; Balestra R; Jerome WG; Weisgraber K; Li Q; Wang J
    Biochemistry; 2007 Sep; 46(37):10722-32. PubMed ID: 17715945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31.
    Weers PM; Abdullahi WE; Cabrera JM; Hsu TC
    Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the core lipid on the energetics of binding of ApoA-I to model lipoprotein particles of different sizes.
    Tanaka M; Saito H; Dhanasekaran P; Wehrli S; Handa T; Lund-Katz S; Phillips MC
    Biochemistry; 2005 Aug; 44(31):10689-95. PubMed ID: 16060677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the structural and dynamic properties of human N-terminal domain of apolipoprotein E by molecular dynamics simulations.
    Ortmans I; Prévost M
    J Phys Chem B; 2008 Jul; 112(29):8730-6. PubMed ID: 18582019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural similarities in the repeat sequences of plasma apolipoproteins, A-I, A-IV, and E.
    Ponnuswamy PK; Selvaraj S
    Protein Seq Data Anal; 1992; 5(1):47-56. PubMed ID: 1492097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides.
    Tanaka M; Tanaka T; Ohta S; Kawakami T; Konno H; Akaji K; Aimoto S; Saito H
    J Pept Sci; 2009 Jan; 15(1):36-42. PubMed ID: 19048603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined N- and C-terminal truncation of human apolipoprotein A-I yields a folded, functional central domain.
    Beckstead JA; Block BL; Bielicki JK; Kay CM; Oda MN; Ryan RO
    Biochemistry; 2005 Mar; 44(11):4591-9. PubMed ID: 15766290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.