These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 15235095)
1. Serotonin and cholecystokinin synergistically stimulate rat vagal primary afferent neurones. Li Y; Wu XY; Owyang C J Physiol; 2004 Sep; 559(Pt 2):651-62. PubMed ID: 15235095 [TBL] [Abstract][Full Text] [Related]
2. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat. Zhu JX; Zhu XY; Owyang C; Li Y J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274 [TBL] [Abstract][Full Text] [Related]
3. Sensory signal transduction in the vagal primary afferent neurons. Li Y Curr Med Chem; 2007; 14(24):2554-63. PubMed ID: 17979708 [TBL] [Abstract][Full Text] [Related]
4. Low-affinity CCK-A receptors are coexpressed with leptin receptors in rat nodose ganglia: implications for leptin as a regulator of short-term satiety. Li Y; Wu X; Zhou S; Owyang C Am J Physiol Gastrointest Liver Physiol; 2011 Feb; 300(2):G217-27. PubMed ID: 21109591 [TBL] [Abstract][Full Text] [Related]
5. High fat diet attenuates glucose-dependent facilitation of 5-HT3 -mediated responses in rat gastric vagal afferents. Troy AE; Simmonds SS; Stocker SD; Browning KN J Physiol; 2016 Jan; 594(1):99-114. PubMed ID: 26456775 [TBL] [Abstract][Full Text] [Related]
6. Activation of cholecystokinin (CCK 1) and serotonin (5-HT 3) receptors increases the discharge of pancreatic vagal afferents. Mussa BM; Sartor DM; Verberne AJ Eur J Pharmacol; 2008 Dec; 601(1-3):198-206. PubMed ID: 19026634 [TBL] [Abstract][Full Text] [Related]
7. Comparative pharmacology of cholecystokinin induced activation of cultured vagal afferent neurons from rats and mice. Kinch DC; Peters JH; Simasko SM PLoS One; 2012; 7(4):e34755. PubMed ID: 22514663 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents. Schwartz GJ; McHugh PR; Moran TH Am J Physiol; 1994 Jul; 267(1 Pt 2):R303-8. PubMed ID: 8048636 [TBL] [Abstract][Full Text] [Related]
9. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Peters JH; Ritter RC; Simasko SM Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1544-9. PubMed ID: 16384857 [TBL] [Abstract][Full Text] [Related]
10. Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons. Simasko SM; Wiens J; Karpiel A; Covasa M; Ritter RC Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1303-13. PubMed ID: 12388458 [TBL] [Abstract][Full Text] [Related]
11. Serotonin and cholecystokinin activate different populations of rat mesenteric vagal afferents. Hillsley K; Grundy D Neurosci Lett; 1998 Oct; 255(2):63-6. PubMed ID: 9835215 [TBL] [Abstract][Full Text] [Related]
12. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Peters JH; Karpiel AB; Ritter RC; Simasko SM Endocrinology; 2004 Aug; 145(8):3652-7. PubMed ID: 15105382 [TBL] [Abstract][Full Text] [Related]
13. High-affinity CCK-A receptors on the vagus nerve mediate CCK-stimulated pancreatic secretion in rats. Li Y; Hao Y; Owyang C Am J Physiol; 1997 Sep; 273(3 Pt 1):G679-85. PubMed ID: 9316472 [TBL] [Abstract][Full Text] [Related]
14. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241 [TBL] [Abstract][Full Text] [Related]
15. Effect of CCK pretreatment on the CCK sensitivity of rat polymodal gastric vagal afferent in vitro. Wei JY; Wang YH Am J Physiol Endocrinol Metab; 2000 Sep; 279(3):E695-706. PubMed ID: 10950839 [TBL] [Abstract][Full Text] [Related]
16. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors. Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269 [TBL] [Abstract][Full Text] [Related]
17. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. Blackshaw LA; Grundy D J Auton Nerv Syst; 1993 Oct; 45(1):41-50. PubMed ID: 8227963 [TBL] [Abstract][Full Text] [Related]
19. Activation of 5-HT1B and 5-HT1D receptors in the rat nucleus tractus solitarius: opposing action on neurones that receive an excitatory vagal C-fibre afferent input. Jeggo RD; Wang Y; Jordan D; Ramage AG Br J Pharmacol; 2007 Apr; 150(8):987-95. PubMed ID: 17339842 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiological and autoradiographical evidence for cholecystokinin A receptors on rat isolated nodose ganglia. Widdop RE; Krstew E; Mercer LD; Carlberg M; Beart PM; Jarrott B J Auton Nerv Syst; 1994; 46(1-2):65-73. PubMed ID: 8120343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]