These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 15235095)
21. 5-HT activates vagal afferent cell bodies in vivo: role of 5-HT2 and 5-HT3 receptors. Lacolley P; Owen JR; Sandock K; Lewis TH; Bates JN; Robertson TP; Lewis SJ Neuroscience; 2006 Nov; 143(1):273-87. PubMed ID: 17029799 [TBL] [Abstract][Full Text] [Related]
22. Electrical physiological evidence for highand low-affinity vagal CCK-A receptors. Li Y; Zhu J; Owyang C Am J Physiol; 1999 Aug; 277(2):G469-77. PubMed ID: 10444462 [TBL] [Abstract][Full Text] [Related]
23. Serotonin released from intestinal enterochromaffin cells mediates luminal non-cholecystokinin-stimulated pancreatic secretion in rats. Li Y; Hao Y; Zhu J; Owyang C Gastroenterology; 2000 Jun; 118(6):1197-207. PubMed ID: 10833495 [TBL] [Abstract][Full Text] [Related]
24. Serotonin unmasks functional NK-2 receptors in vagal sensory neurones of the guinea-pig. Moore KA; Taylor GE; Weinreich D J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):111-24. PubMed ID: 9831720 [TBL] [Abstract][Full Text] [Related]
25. Cocaine- and amphetamine-regulated transcript mediates the actions of cholecystokinin on rat vagal afferent neurons. De Lartigue G; Dimaline R; Varro A; Raybould H; De la Serre CB; Dockray GJ Gastroenterology; 2010 Apr; 138(4):1479-90. PubMed ID: 19854189 [TBL] [Abstract][Full Text] [Related]
26. Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies. Li Y; Wu X; Yao H; Owyang C Am J Physiol Gastrointest Liver Physiol; 2005 Oct; 289(4):G745-52. PubMed ID: 15920018 [TBL] [Abstract][Full Text] [Related]
27. Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat. Li Y; Owyang C J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):773-82. PubMed ID: 8865073 [TBL] [Abstract][Full Text] [Related]
28. 5-Hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia. Higashi H; Nishi S J Physiol; 1982 Feb; 323():543-67. PubMed ID: 7097585 [TBL] [Abstract][Full Text] [Related]
29. Further studies on the blockade of 5-HT depolarizations of rabbit vagal afferent and sympathetic ganglion cells by MDL 72222 and other antagonists. Round A; Wallis DI Neuropharmacology; 1987 Jan; 26(1):39-48. PubMed ID: 3561718 [TBL] [Abstract][Full Text] [Related]
30. The depolarizing action of 5-hydroxytryptamine on rabbit vagal primary afferent and sympathetic neurones and its selective blockade by MDL 72222. Azami J; Fozard JR; Round AA; Wallis DI Naunyn Schmiedebergs Arch Pharmacol; 1985 Feb; 328(4):423-9. PubMed ID: 3990828 [TBL] [Abstract][Full Text] [Related]
31. Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. Chuaychoo B; Lee MG; Kollarik M; Undem BJ Pulm Pharmacol Ther; 2005; 18(4):269-76. PubMed ID: 15777609 [TBL] [Abstract][Full Text] [Related]
33. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. Daly DM; Park SJ; Valinsky WC; Beyak MJ J Physiol; 2011 Jun; 589(Pt 11):2857-70. PubMed ID: 21486762 [TBL] [Abstract][Full Text] [Related]
34. Interleukin-1beta sensitizes the response of the gastric vagal afferent to cholecystokinin in rat. Bucinskaite V; Kurosawa M; Miyasaka K; Funakoshi A; Lundeberg T Neurosci Lett; 1997 Jun; 229(1):33-6. PubMed ID: 9224795 [TBL] [Abstract][Full Text] [Related]
35. Receptor subtype specific activation of the rat gastric vagal afferent fibers to serotonin. Uneyama H; Niijima A; Tanaka T; Torii K Life Sci; 2002 Dec; 72(4-5):415-23. PubMed ID: 12467882 [TBL] [Abstract][Full Text] [Related]
36. Cholecystokinin activates both A- and C-type vagal afferent neurons. Simasko SM; Ritter RC Am J Physiol Gastrointest Liver Physiol; 2003 Dec; 285(6):G1204-13. PubMed ID: 12946940 [TBL] [Abstract][Full Text] [Related]
37. Evidence that 5-hydroxytryptamine(7) receptors play a role in the mediation of afferent transmission within the nucleus tractus solitarius in anaesthetized rats. Oskutyte D; Jordan D; Ramage AG Br J Pharmacol; 2009 Nov; 158(5):1387-94. PubMed ID: 19785653 [TBL] [Abstract][Full Text] [Related]
38. Characterization of CCK(A) receptor affinity states and Ca(2+) signal transduction in vagal nodose ganglia. Lankisch TO; Tsunoda Y; Lu Y; Owyang C Am J Physiol Gastrointest Liver Physiol; 2002 Jun; 282(6):G1002-8. PubMed ID: 12016125 [TBL] [Abstract][Full Text] [Related]
39. In vivo effects of 5-hydroxytryptamine receptor activation on rat nucleus tractus solitarius neurones excited by vagal C-fibre afferents. Wang Y; Ramage AG; Jordan D Neuropharmacology; 1997; 36(4-5):489-98. PubMed ID: 9225274 [TBL] [Abstract][Full Text] [Related]
40. Subtypes of vagal afferent C-fibres in guinea-pig lungs. Undem BJ; Chuaychoo B; Lee MG; Weinreich D; Myers AC; Kollarik M J Physiol; 2004 May; 556(Pt 3):905-17. PubMed ID: 14978204 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]