These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 15236032)

  • 1. Evaluation of shock-related cardiotoxic peptide.
    Kawabata H; Yahagi M; Mizumachi K; Tezuka S
    J Anesth; 1989 Sep; 3(2):155-65. PubMed ID: 15236032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pancreatic hypoperfusion and the production of a myocardial depressant factor in hemorrhagic shock.
    Lefer AM; Spath JA
    Ann Surg; 1974 Jun; 179(6):868-76. PubMed ID: 4835505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique developed for isolated canine papillary muscle function in various plasmas; and utility ascertained with plasma containing myocardial depressant factors.
    Hembrough FB; Miller CD; Williams K; Anderson A
    Am J Vet Res; 1980 May; 41(5):700-6. PubMed ID: 7406288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a role of platelet activating factor in hypovolemic shock in the rat.
    Zingarelli B; Squadrito F; Bussolino F; Calapai G; Altavilla D; Ioculano M; Campo GM; Canale P; Caputi AP
    J Lipid Mediat Cell Signal; 1994 Mar; 9(2):123-34. PubMed ID: 8012759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net inotropic plasma activity in canine hypovolemic traumatic shock: low molecular weight plasma fraction after prolonged hypotension depresses cardiac muscle performance in vitro.
    Hallström S; Vogl C; Redl H; Schlag G
    Circ Shock; 1990 Feb; 30(2):129-44. PubMed ID: 2311203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial effects of endotoxin shock: characterization of an isolated heart muscle model.
    Parker JL; Adams HR
    Adv Shock Res; 1979; 2():163-75. PubMed ID: 400576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pathophysiologic role of myocardial depressant factor as a mediator of circulatory shock.
    Lefer AM
    Klin Wochenschr; 1982 Jul; 60(14):713-6. PubMed ID: 6181287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actions of non-cardiodepressant beta-adrenergic blocking agents in hemorrhagic shock.
    Lefer AM; Lefer DJ; Levin RJ
    Adv Shock Res; 1980; 3():167-74. PubMed ID: 6118024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified paper chromatographic method for assay of myocardial depressant factor.
    Yamada T; Pettit GW
    Circ Shock; 1977; 4(4):379-86. PubMed ID: 598007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hemorrhagic hypotension on endotoxin-induced lung injury in awake sheep.
    Krausz MM; Moriel E; Coronado E
    Circ Shock; 1989 Jan; 27(1):39-50. PubMed ID: 2917372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-shock actions of the pyrimido-pyrimidine derivative, RA-642.
    Hock CE; Lefer DJ; Lefer AM
    Methods Find Exp Clin Pharmacol; 1986 May; 8(5):265-9. PubMed ID: 3724301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chemical nature of a pancreatic cardiodepressant factor.
    Goldfarb RD; Weber P
    Circ Shock; 1977; 4(1):95-100. PubMed ID: 923011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial dysfunction in endotoxin- and E. coli-induced shock: pathophysiological mechanisms.
    Archer LT
    Circ Shock; 1985; 15(4):261-80. PubMed ID: 3888434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of shock on calcium accumulation by cardiac sarcoplasmic reticulum.
    Estes JE; Farley PE; Goldfarb RD
    Adv Shock Res; 1980; 3():229-37. PubMed ID: 6458201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDF: its participation in the pathophysiology of shock.
    Okada K; Kosugi I; Tanokura Y; Tajimi K; Ohmura A; Innami H; Tsukamoto T; Inaba T
    Prog Clin Biol Res; 1983; 111():125-46. PubMed ID: 6867021
    [No Abstract]   [Full Text] [Related]  

  • 16. Hemorrhagic hypotension impairs endothelium-dependent relaxations in the renal artery of the cat.
    Szabó C; Faragó M; Horváth I; Lohinai Z; Kovách AG
    Circ Shock; 1992 Mar; 36(3):238-41. PubMed ID: 1611708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beneficial actions of thromboxane receptor antagonism in hemorrhagic shock.
    Bitterman H; Yanagisawa A; Lefer AM
    Circ Shock; 1986; 20(1):1-11. PubMed ID: 2945667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preservation of cellular integrity as a protective mechanism of dexamethasone in hemorrhagic shock in the cat.
    Trachte GJ; Lefer AM
    Arch Int Pharmacodyn Ther; 1978 Apr; 232(2):309-20. PubMed ID: 677964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloricromene improves survival rate and peritoneal macrophage function in splanchnic artery occlusion shock in rats.
    Sturniolo R; Squadrito F; Altavilla D; Trimarchi GR; Prosdocimi M; Caputi AP
    Circ Shock; 1989 Jul; 28(3):267-77. PubMed ID: 2766481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.