BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15236524)

  • 1. Quantum mechanical models of the resting state of the vanadium-dependent haloperoxidase.
    Zampella G; Kravitz JY; Webster CE; Fantucci P; Hall MB; Carlson HA; Pecoraro VL; De Luca L
    Inorg Chem; 2004 Jul; 43(14):4127-36. PubMed ID: 15236524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of vanadium haloperoxidases.
    Raugei S; Carloni P
    J Phys Chem B; 2006 Mar; 110(8):3747-58. PubMed ID: 16494433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of peroxo forms of the vanadium haloperoxidase cofactor. A DFT investigation.
    Zampella G; Fantucci P; Pecoraro VL; De Gioia L
    J Am Chem Soc; 2005 Jan; 127(3):953-60. PubMed ID: 15656634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 51V solid-state magic angle spinning NMR spectroscopy of vanadium chloroperoxidase.
    Pooransingh-Margolis N; Renirie R; Hasan Z; Wever R; Vega AJ; Polenova T
    J Am Chem Soc; 2006 Apr; 128(15):5190-208. PubMed ID: 16608356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM investigation of structure and spectroscopic properties of a vanadium-containing peroxidase.
    Zhang Y; Gascón JA
    J Inorg Biochem; 2008 Aug; 102(8):1684-90. PubMed ID: 18538850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 51V NMR chemical shifts calculated from QM/MM models of vanadium chloroperoxidase.
    Waller MP; Bühl M; Geethalakshmi KR; Wang D; Thiel W
    Chemistry; 2007; 13(17):4723-32. PubMed ID: 17440907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Mechanics/Molecular Mechanics Calculations of the Vanadium Dependent Chloroperoxidase.
    Kravitz JY; Pecoraro VL; Carlson HA
    J Chem Theory Comput; 2005 Nov; 1(6):1265-74. PubMed ID: 26631670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional comparisons between vanadium haloperoxidase and acid phosphatase enzymes.
    Littlechild J; Garcia-Rodriguez E; Dalby A; Isupov M
    J Mol Recognit; 2002; 15(5):291-6. PubMed ID: 12447906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the protonation site of vanadium peroxide complexes and the implications for biomimetic catalysis.
    Schneider CJ; Penner-Hahn JE; Pecoraro VL
    J Am Chem Soc; 2008 Mar; 130(9):2712-3. PubMed ID: 18266364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zr(IV)-monosubstituted Keggin-type dimeric polyoxometalates: synthesis, characterization, catalysis of H2O2-based oxidations, and theoretical study.
    Kholdeeva OA; Maksimov GM; Maksimovskaya RI; Vanina MP; Trubitsina TA; Naumov DY; Kolesov BA; Antonova NS; Carbó JJ; Poblet JM
    Inorg Chem; 2006 Sep; 45(18):7224-34. PubMed ID: 16933923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ⁵¹V NMR Crystallography of Vanadium Chloroperoxidase and Its Directed Evolution P395D/L241V/T343A Mutant: Protonation Environments of the Active Site.
    Gupta R; Hou G; Renirie R; Wever R; Polenova T
    J Am Chem Soc; 2015 Apr; 137(16):5618-28. PubMed ID: 25856001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications for the catalytic mechanism of the vanadium-containing enzyme chloroperoxidase from the fungus Curvularia inaequalis by X-ray structures of the native and peroxide form.
    Messerschmidt A; Prade L; Wever R
    Biol Chem; 1997; 378(3-4):309-15. PubMed ID: 9165086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray structure determination of a vanadium-dependent haloperoxidase from Ascophyllum nodosum at 2.0 A resolution.
    Weyand M; Hecht H; Kiess M; Liaud M; Vilter H; Schomburg D
    J Mol Biol; 1999 Oct; 293(3):595-611. PubMed ID: 10543953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of oxo transfer to prochiral sulfides by oxovanadium(v) compounds that model the active center of haloperoxidases.
    Santoni G; Licini G; Rehder D
    Chemistry; 2003 Oct; 9(19):4700-8. PubMed ID: 14566876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases.
    Díaz N; Suarez D; Sordo TL
    J Phys Chem B; 2006 Nov; 110(47):24222-30. PubMed ID: 17125395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the catalytic mechanism of vanadium haloperoxidases. DFT investigation of vanadium cofactor reactivity.
    Zampella G; Fantucci P; Pecoraro VL; De Gioia L
    Inorg Chem; 2006 Sep; 45(18):7133-43. PubMed ID: 16933914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand versus metal protonation of an iron hydrogenase active site mimic.
    Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R
    Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycine- and sarcosine-based models of vanadate-dependent haloperoxidases in sulfoxygenation reactions.
    Wikete C; Wu P; Zampella G; De Gioia L; Licini G; Rehder D
    Inorg Chem; 2007 Jan; 46(1):196-207. PubMed ID: 17198428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common system setup for the entire catalytic cycle of cytochrome P450(cam) in quantum mechanical/molecular mechanical studies.
    Zheng J; Altun A; Thiel W
    J Comput Chem; 2007 Oct; 28(13):2147-58. PubMed ID: 17450550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.