These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cooperative metal-boron interactions in the reaction of nido-1,2-(Cp*RuH)2B3H7, Cp* = eta5-C5Me5, with HC(triple bond)CPh. Yan H; Noll BC; Fehlner TP J Am Chem Soc; 2005 Apr; 127(13):4831-44. PubMed ID: 15796548 [TBL] [Abstract][Full Text] [Related]
4. Density functional study of 8- and 11-vertex polyhedral borane structures: comparison with bare germanium clusters. King RB; Silaghi-Dumitrescu I; Lupan A Inorg Chem; 2005 Oct; 44(22):7819-24. PubMed ID: 16241131 [TBL] [Abstract][Full Text] [Related]
5. Cubane-type heterometallic sulfido clusters: incorporation of two metal fragments into a dinuclear ReS(mu-S)2ReS core affording bimetallic M2Re2(mu 3-S)4 clusters (M = Ru, Pt, Cu) or trimetallic MM'Re2(mu 3-S)4 clusters via incomplete cubane-type MRe2(mu 3-S)(mu 2-S)3 intermediates (M = Ru, Rh, Ir; M' = Mo, W, Pd, Ru, Rh). Seino H; Kaneko T; Fujii S; Hidai M; Mizobe Y Inorg Chem; 2003 Jul; 42(15):4585-96. PubMed ID: 12870948 [TBL] [Abstract][Full Text] [Related]
6. Supraicosahedral polyhedra in metallaboranes: synthesis and structural characterization of 12-, 15-, and 16-vertex rhodaboranes. Roy DK; Mondal B; Shankhari P; Anju RS; Geetharani K; Mobin SM; Ghosh S Inorg Chem; 2013 Jun; 52(11):6705-12. PubMed ID: 23688289 [TBL] [Abstract][Full Text] [Related]
7. Cluster expansion reactions of group 6 and 8 metallaboranes using transition metal carbonyl compounds of groups 7-9. Geetharani K; Bose SK; Sahoo S; Varghese B; Mobin SM; Ghosh S Inorg Chem; 2011 Jun; 50(12):5824-32. PubMed ID: 21612193 [TBL] [Abstract][Full Text] [Related]
8. Syntheses, characterizations, and coordination chemistry of the 10-vertex phosphadicarbaboranes 6-R-arachno-6,8,9-PC2B7H11 and 6-R-arachno-6,5,7-PC2B7H11. Hong D; Rathmill SE; Carroll PJ; Sneddon LG J Am Chem Soc; 2003 Dec; 125(51):16058-73. PubMed ID: 14677998 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. Le Guennic B; Jiao H; Kahlal S; Saillard JY; Halet JF; Ghosh S; Shang M; Beatty AM; Rheingold AL; Fehlner TP J Am Chem Soc; 2004 Mar; 126(10):3203-17. PubMed ID: 15012150 [TBL] [Abstract][Full Text] [Related]
10. Some examples of unusual skeletal bonding topologies in metallaboranes containing two or three early transition metal vertices. King RB Inorg Chem; 2001 Jun; 40(12):2699-704. PubMed ID: 11375682 [TBL] [Abstract][Full Text] [Related]
11. Closo versus hypercloso metallaboranes: A DFT study. Shameema O; Jemmis ED Inorg Chem; 2009 Aug; 48(16):7818-27. PubMed ID: 19601587 [TBL] [Abstract][Full Text] [Related]
12. Structural relationships among two vertex sharing macropolyhedral boranes. Kiani FA; Hofmann M Dalton Trans; 2007 Mar; (12):1207-13. PubMed ID: 17353952 [TBL] [Abstract][Full Text] [Related]
13. Ruthenacarboranes from the reaction of nido-1,2-(Cp*RuH)2B3H7 with HC [triple bond] CCO2Me, Cp* = eta5-C5Me5. Hydrometalation, alkyne incorporation, and functional group modification via cooperative metal-boron interactions within a metallaborane cluster framework. Yan H; Beatty AM; Fehlner TP J Am Chem Soc; 2003 Dec; 125(52):16367-82. PubMed ID: 14692779 [TBL] [Abstract][Full Text] [Related]
14. Monomeric and oligomeric amine-borane sigma-complexes of rhodium. intermediates in the catalytic dehydrogenation of amine-boranes. Douglas TM; Chaplin AB; Weller AS; Yang X; Hall MB J Am Chem Soc; 2009 Oct; 131(42):15440-56. PubMed ID: 19785431 [TBL] [Abstract][Full Text] [Related]
15. Fine tuning of metallaborane geometries: chemistry of metallaboranes of early transition metals derived from metal halides and monoborane reagents. Bose SK; Geetharani K; Ramkumar V; Mobin SM; Ghosh S Chemistry; 2009 Dec; 15(48):13483-90. PubMed ID: 19894230 [TBL] [Abstract][Full Text] [Related]
16. Chemistry of mangana- and rhenatricarbadecaboranyl tricarbonyl complexes: evidence for an associative mechanism of ligand substitution involving an eta6-eta4 cage-slippage process analagous to eta5-eta3-cyclopentadienyl ring-slippage. Butterick R; Ramachandran BM; Carroll PJ; Sneddon LG J Am Chem Soc; 2006 Jul; 128(26):8626-37. PubMed ID: 16802829 [TBL] [Abstract][Full Text] [Related]
17. The synthesis, characterisation and reactivity of 2-phosphanylethylcyclopentadienyl complexes of cobalt, rhodium and iridium. McConnell AC; Pogorzelec PJ; Slawin AM; Williams GL; Elliott PI; Haynes A; Marr AC; Cole-Hamilton DJ Dalton Trans; 2006 Jan; (1):91-107. PubMed ID: 16357965 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of half-sandwich N-heterocyclic carbene complexes of cobalt and rhodium. Fooladi E; Dalhus B; Tilset M Dalton Trans; 2004 Nov; (22):3909-17. PubMed ID: 15540136 [TBL] [Abstract][Full Text] [Related]
19. Topological Aspects of the Skeletal Bonding in "Isocloso" Metallaboranes Containing "Anomalous" Numbers of Skeletal Electrons. King RB Inorg Chem; 1999 Nov; 38(22):5151-5153. PubMed ID: 11671262 [TBL] [Abstract][Full Text] [Related]
20. Density functional theory study of 10-atom germanium clusters: effect of electron count on cluster geometry. King RB; Silaghi-Dumitrescu I; Uţa MM Inorg Chem; 2006 Jun; 45(13):4974-81. PubMed ID: 16780318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]