BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

493 related articles for article (PubMed ID: 15236588)

  • 1. Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning.
    Caputo GA; London E
    Biochemistry; 2004 Jul; 43(27):8794-806. PubMed ID: 15236588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3275-85. PubMed ID: 12641459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of interactions involving ionizable residues flanking membrane-inserted hydrophobic helices upon helix-helix interaction.
    Lew S; Caputo GA; London E
    Biochemistry; 2003 Sep; 42(36):10833-42. PubMed ID: 12962508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of polar and/or ionizable residues in the core and flanking regions of hydrophobic helices on transmembrane conformation and oligomerization.
    Lew S; Ren J; London E
    Biochemistry; 2000 Aug; 39(32):9632-40. PubMed ID: 10933779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by the cholesterol concentration.
    Ren J; Lew S; Wang Z; London E
    Biochemistry; 1997 Aug; 36(33):10213-20. PubMed ID: 9254619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location and dynamics of tryptophan in transmembrane alpha-helix peptides: a fluorescence and circular dichroism study.
    de Foresta B; Tortech L; Vincent M; Gallay J
    Eur Biophys J; 2002 Jun; 31(3):185-97. PubMed ID: 12029331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial folding and membrane insertion of a designed helical peptide.
    Ladokhin AS; White SH
    Biochemistry; 2004 May; 43(19):5782-91. PubMed ID: 15134452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes.
    Krishnakumar SS; London E
    J Mol Biol; 2007 Nov; 374(3):671-87. PubMed ID: 17950311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a novel dual fluorescence quenching assay for measurement of tryptophan depth within lipid bilayers to determine hydrophobic alpha-helix locations within membranes.
    Caputo GA; London E
    Biochemistry; 2003 Mar; 42(11):3265-74. PubMed ID: 12641458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of tryptophan residues in an integral membrane protein: diacylglycerol kinase.
    Clark EH; East JM; Lee AG
    Biochemistry; 2003 Sep; 42(37):11065-73. PubMed ID: 12974643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.