BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15236783)

  • 1. Ionotropic glutamate receptor activated by N-methyl-D-aspartate: a key molecule of conscious life.
    Lareo LR; Corredor C
    Med Hypotheses; 2004; 63(2):245-9. PubMed ID: 15236783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of neural activity in synaptic development and its implications for adult brain function.
    Aamodt SM; Constantine-Paton M
    Adv Neurol; 1999; 79():133-44. PubMed ID: 10514810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal transmission stimulates the phosphorylation of Kv1.4 channel at Ser229 through protein kinase A1.
    Tao Y; Zeng R; Shen B; Jia J; Wang Y
    J Neurochem; 2005 Sep; 94(6):1512-22. PubMed ID: 16000151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection by cholesterol-extracting cyclodextrins: a role for N-methyl-D-aspartate receptor redistribution.
    Abulrob A; Tauskela JS; Mealing G; Brunette E; Faid K; Stanimirovic D
    J Neurochem; 2005 Mar; 92(6):1477-86. PubMed ID: 15748165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMDA Receptors in glia.
    Verkhratsky A; Kirchhoff F
    Neuroscientist; 2007 Feb; 13(1):28-37. PubMed ID: 17229973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of the NMDA receptor NR3A subunit in the adult pig-tail macaque brain.
    Mueller HT; Meador-Woodruff JH
    J Chem Neuroanat; 2005 May; 29(3):157-72. PubMed ID: 15820618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats.
    Rosa RB; Schwarzbold C; Dalcin KB; Ghisleni GC; Ribeiro CA; Moretto MB; Frizzo ME; Hoffmann GF; Souza DO; Wajner M
    Neurochem Int; 2004 Dec; 45(7):1087-94. PubMed ID: 15337308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular and synaptic distribution of NR2A and NR2B in macaque monkey and rat hippocampus as visualized with subunit-specific monoclonal antibodies.
    Janssen WG; Vissavajjhala P; Andrews G; Moran T; Hof PR; Morrison JH
    Exp Neurol; 2005 Feb; 191 Suppl 1():S28-44. PubMed ID: 15629759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of NMDA receptor antagonist on proliferation of neurospheres from embryonic brain.
    Mochizuki N; Takagi N; Kurokawa K; Kawai T; Besshoh S; Tanonaka K; Takeo S
    Neurosci Lett; 2007 May; 417(2):143-8. PubMed ID: 17403571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxiliary subunits assist AMPA-type glutamate receptors.
    Nicoll RA; Tomita S; Bredt DS
    Science; 2006 Mar; 311(5765):1253-6. PubMed ID: 16513974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique.
    Nagy GG; Watanabe M; Fukaya M; Todd AJ
    Eur J Neurosci; 2004 Dec; 20(12):3301-12. PubMed ID: 15610162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-methyl-D-aspartate and sigma-ligands change the production of interleukins 8 and 10 in lymphocytes through modulation of the NMDA glutamate receptor.
    Kvaratskhelia E; Maisuradze E; Dabrundashvili NG; Natsvlishvili N; Zhuravliova E; Mikeladze DG
    Neuroimmunomodulation; 2009; 16(3):201-7. PubMed ID: 19246943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid bidirectional switching of synaptic NMDA receptors.
    Bellone C; Nicoll RA
    Neuron; 2007 Sep; 55(5):779-85. PubMed ID: 17785184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus.
    Luccini E; Musante V; Neri E; Raiteri M; Pittaluga A
    J Neurosci Res; 2007 Dec; 85(16):3657-65. PubMed ID: 17671992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium influx through N-methyl-D-aspartate receptors triggers GABA release at interneuron-Purkinje cell synapse in rat cerebellum.
    Glitsch MD
    Neuroscience; 2008 Jan; 151(2):403-9. PubMed ID: 18055124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors.
    Fellin T; Pascual O; Gobbo S; Pozzan T; Haydon PG; Carmignoto G
    Neuron; 2004 Sep; 43(5):729-43. PubMed ID: 15339653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New targets for pharmacological intervention in the glutamatergic synapse.
    Gardoni F; Di Luca M
    Eur J Pharmacol; 2006 Sep; 545(1):2-10. PubMed ID: 16831414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ channel-mediated Ca2+ entry leads to glutamate secretion in mouse neocortical preplate.
    Platel JC; Boisseau S; Dupuis A; Brocard J; Poupard A; Savasta M; Villaz M; Albrieux M
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19174-9. PubMed ID: 16357207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild mitochondrial inhibition in vivo enhances glutamate-induced neuronal damage through calpain but not caspase activation: role of ionotropic glutamate receptors.
    Del Río P; Massieu L
    Exp Neurol; 2008 Jul; 212(1):179-88. PubMed ID: 18495118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.