BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15236783)

  • 41. Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices.
    Frade JG; Barbosa RM; Laranjinha J
    Hippocampus; 2009 Jul; 19(7):603-11. PubMed ID: 19115375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. NMDA receptor stimulation in the absence of extracellular Ca2+ potentiates Ca2+ influx-dependent cell death system.
    Kato K; Murota SI
    Brain Res; 2005 Feb; 1035(2):177-87. PubMed ID: 15722057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Postnatal switching of NMDA receptor subunits from NR2B to NR2A in rat facial motor neurons.
    Xing GG; Wang R; Yang B; Zhang D
    Eur J Neurosci; 2006 Dec; 24(11):2987-92. PubMed ID: 17156360
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia.
    Micu I; Jiang Q; Coderre E; Ridsdale A; Zhang L; Woulfe J; Yin X; Trapp BD; McRory JE; Rehak R; Zamponi GW; Wang W; Stys PK
    Nature; 2006 Feb; 439(7079):988-92. PubMed ID: 16372019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
    Davidson ME; Kerepesi LA; Soto A; Chan VT
    Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMDA receptors lose their inhibitions.
    Lovinger DM
    Nat Neurosci; 2002 Jul; 5(7):614-6. PubMed ID: 12085089
    [No Abstract]   [Full Text] [Related]  

  • 47. Constitutive activity of ionotropic glutamate receptors via hydrophobic substitutions in the ligand-binding domain.
    Seljeset S; Sintsova O; Wang Y; Harb HY; Lynagh T
    Structure; 2024 Apr; ():. PubMed ID: 38677289
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In silico identification of regulatory elements of GRIN1 genes.
    Mejía-Guerra MK; Lareo LR
    OMICS; 2005; 9(1):106-15. PubMed ID: 15805781
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Localization and stabilization of ionotropic glutamate receptors at synapses.
    Bolton MM; Blanpied TA; Ehlers MD
    Cell Mol Life Sci; 2000 Oct; 57(11):1517-25. PubMed ID: 11092446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modeling the effect of glutamate diffusion and uptake on NMDA and non-NMDA receptor saturation.
    Holmes WR
    Biophys J; 1995 Nov; 69(5):1734-47. PubMed ID: 8580317
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of an N-methyl-D-aspartate receptor in isolated nervous system mitochondria.
    Korde AS; Maragos WF
    J Biol Chem; 2012 Oct; 287(42):35192-35200. PubMed ID: 22918829
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica.
    Greer JB; Khuri S; Fieber LA
    BMC Evol Biol; 2017 Jan; 17(1):11. PubMed ID: 28077092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca²⁺ influx.
    Kwaaitaal M; Maintz J; Cavdar M; Panstruga R
    Plant Signal Behav; 2012 Nov; 7(11):1373-7. PubMed ID: 22918498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of calcium regulation in pathophysiology model of schizophrenia and possible interventions.
    Yarlagadda A
    Med Hypotheses; 2002 Feb; 58(2):182-6. PubMed ID: 11812200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unconsciousness.
    Flohr H
    Best Pract Res Clin Anaesthesiol; 2006 Mar; 20(1):11-22. PubMed ID: 16634410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new subfamily of ionotropic glutamate receptors unique to the echinoderms with putative sensory role.
    Sania RE; Cardoso JCR; Louro B; Marquet N; Canário AVM
    Mol Ecol; 2021 Dec; 30(24):6642-6658. PubMed ID: 34601781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Trans-synaptic interactions of ionotropic glutamate receptors.
    Fossati M; Charrier C
    Curr Opin Neurobiol; 2021 Feb; 66():85-92. PubMed ID: 33130410
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Receptor heteromeric assembly-how it works and why it matters: the case of ionotropic glutamate receptors.
    Herguedas B; Krieger J; Greger IH
    Prog Mol Biol Transl Sci; 2013; 117():361-86. PubMed ID: 23663975
    [TBL] [Abstract][Full Text] [Related]  

  • 59. N-methyl-D-aspartate channel and consciousness: from signal coincidence detection to quantum computing.
    Freitas da Rocha A; Pereira A; Bezerra Coutinho FA
    Prog Neurobiol; 2001 Aug; 64(6):555-73. PubMed ID: 11311462
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.
    Hansen KB; Wollmuth LP; Bowie D; Furukawa H; Menniti FS; Sobolevsky AI; Swanson GT; Swanger SA; Greger IH; Nakagawa T; McBain CJ; Jayaraman V; Low CM; Dell'Acqua ML; Diamond JS; Camp CR; Perszyk RE; Yuan H; Traynelis SF
    Pharmacol Rev; 2021 Oct; 73(4):298-487. PubMed ID: 34753794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.