BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 15236936)

  • 1. Numerical analysis of tooth mobility: formulation of a non-linear constitutive law for the periodontal ligament.
    Natali AN; Pavan PG; Scarpa C
    Dent Mater; 2004 Sep; 20(7):623-9. PubMed ID: 15236936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonlinear elastic model of the periodontal ligament and its numerical calibration for the study of tooth mobility.
    Pietrzak G; Curnier A; Botsis J; Scherrer S; Wiskott A; Belser U
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):91-100. PubMed ID: 12186719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Finite element analysis on physiological mobility of individual teeth].
    Miki T; Asaoka K; Kuwayama N; Kawata T
    Shika Zairyo Kikai; 1990 Mar; 9(2):189-96. PubMed ID: 2135510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN; Pavan PG; Carniel EL; Dorow C
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical response of bone under short-term loading of a dental implant with an internal layer simulating the nonlinear behaviour of the periodontal ligament.
    Genna F; Paganelli C; Salgarello S; Sapelli P
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):305-18. PubMed ID: 14675951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanism of noncontinuous supraosseous tooth eruption.
    Katona TR; Qian H
    Am J Orthod Dentofacial Orthop; 2001 Sep; 120(3):263-71. PubMed ID: 11552125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Three-dimensional finite element study on periodontal membrane of central maxillary incisor under physiological load].
    Fan Y; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Mar; 16(1):21-4, 28. PubMed ID: 12553269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Stress analysis of the periodontal ligament of the human tooth using a three-dimensional finite element method].
    Zhou SM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1989 Nov; 24(6):334-7, 385. PubMed ID: 2517822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of tooth, periodontal membrane, and mandibular bone by the finite element method.
    Kitoh M; Suetsugu T; Murakami Y
    Bull Tokyo Med Dent Univ; 1977 Mar; 24(1):81-7. PubMed ID: 265775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bone-remodelling scheme based on principal strains applied to a tooth during translation.
    Provatidis CG
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):347-52. PubMed ID: 14675955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexural and creep properties of human jaw compact bone for FEA studies.
    Vitins V; Dobelis M; Middleton J; Limbert G; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):299-303. PubMed ID: 14675950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An interface model for the periodontal ligament.
    Gei M; Genna F; Bigoni D
    J Biomech Eng; 2002 Oct; 124(5):538-46. PubMed ID: 12405597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-linear viscoelastic behavior of the human periodontal ligament.
    Toms SR; Dakin GJ; Lemons JE; Eberhardt AW
    J Biomech; 2002 Oct; 35(10):1411-5. PubMed ID: 12231287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-linear material models for tracheal smooth muscle tissue.
    Sarma PA; Pidaparti RM; Moulik PN; Meiss RA
    Biomed Mater Eng; 2003; 13(3):235-45. PubMed ID: 12883173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens.
    Kawarizadeh A; Bourauel C; Jäger A
    Eur J Orthod; 2003 Dec; 25(6):569-78. PubMed ID: 14700262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the centre of resistance in an upper human canine and idealized tooth model.
    Vollmer D; Bourauel C; Maier K; Jäger A
    Eur J Orthod; 1999 Dec; 21(6):633-48. PubMed ID: 10665193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Advances and limits in biomedical stress quantification in dento-periodontal structures].
    Tatarciuc M; Panaite S; Neumann CP; Mârţu S; Viţalariu A; Aanicăi C; Ciobanu O
    Rev Med Chir Soc Med Nat Iasi; 2000; 104(4):141-5. PubMed ID: 12089943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical behavior of the periodontium before and after orthodontic tooth movement.
    Tanne K; Inoue Y; Sakuda M
    Angle Orthod; 1995; 65(2):123-8. PubMed ID: 7785803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A systematic approach to the interpretation of tooth mobility and its clinical implications.
    Perlitsh MJ
    Dent Clin North Am; 1980 Apr; 24(2):177-93. PubMed ID: 6928831
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.