These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 15237999)

  • 1. Quantifying the roughness on the free energy landscape: entropic bottlenecks and protein folding rates.
    Chavez LL; Onuchic JN; Clementi C
    J Am Chem Soc; 2004 Jul; 126(27):8426-32. PubMed ID: 15237999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.
    Chu X; Gan L; Wang E; Wang J
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):E2342-51. PubMed ID: 23754431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Funnels, pathways, and the energy landscape of protein folding: a synthesis.
    Bryngelson JD; Onuchic JN; Socci ND; Wolynes PG
    Proteins; 1995 Mar; 21(3):167-95. PubMed ID: 7784423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of non-covalent interactions for determining the folding rate of two-state proteins.
    Gromiha MM; Saraboji K; Ahmad S; Ponnuswamy MN; Suwa M
    Biophys Chem; 2004 Feb; 107(3):263-72. PubMed ID: 14967241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding.
    Wang J; Oliveira RJ; Chu X; Whitford PC; Chahine J; Han W; Wang E; Onuchic JN; Leite VB
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15763-8. PubMed ID: 23019359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying Nonnative Interactions in the Protein-Folding Free-Energy Landscape.
    Mouro PR; de Godoi Contessoto V; Chahine J; Junio de Oliveira R; Pereira Leite VB
    Biophys J; 2016 Jul; 111(2):287-293. PubMed ID: 27463131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The free energy landscape analysis of protein (FIP35) folding dynamics.
    Krivov SV
    J Phys Chem B; 2011 Oct; 115(42):12315-24. PubMed ID: 21902225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hooke׳s law-based approach to protein folding rate.
    Ruiz-Blanco YB; Marrero-Ponce Y; Prieto PJ; Salgado J; García Y; Sotomayor-Torres CM
    J Theor Biol; 2015 Jan; 364():407-17. PubMed ID: 25245368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the effect of homogeneous frustration in protein folding.
    Contessoto VG; Lima DT; Oliveira RJ; Bruni AT; Chahine J; Leite VB
    Proteins; 2013 Oct; 81(10):1727-37. PubMed ID: 23609962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple physical models connect theory and experiment in protein folding kinetics.
    Alm E; Morozov AV; Kortemme T; Baker D
    J Mol Biol; 2002 Sep; 322(2):463-76. PubMed ID: 12217703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical thermodynamics. Taking a walk on a landscape.
    Brooks CL; Onuchic JN; Wales DJ
    Science; 2001 Jul; 293(5530):612-3. PubMed ID: 11474087
    [No Abstract]   [Full Text] [Related]  

  • 13. Empirical free energy calculation: comparison to calorimetric data.
    Weng Z; Delisi C; Vajda S
    Protein Sci; 1997 Sep; 6(9):1976-84. PubMed ID: 9300497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of changes in side chain configurational entropy in binding and folding: general methods and application to helix formation.
    Lee KH; Xie D; Freire E; Amzel LM
    Proteins; 1994 Sep; 20(1):68-84. PubMed ID: 7824524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection-dependent kinetics as a probe of folding landscape microstructure.
    Yang WY; Gruebele M
    J Am Chem Soc; 2004 Jun; 126(25):7758-9. PubMed ID: 15212506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the interplay between geometrical and energetic effects in protein folding.
    Suzuki Y; Onuchic JN
    J Phys Chem B; 2005 Sep; 109(34):16503-10. PubMed ID: 16853098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective stochastic dynamics on a protein folding energy landscape.
    Yang S; Onuchic JN; Levine H
    J Chem Phys; 2006 Aug; 125(5):054910. PubMed ID: 16942260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation and analysis of the energy landscape of small proteins using the activation-relaxation technique.
    Mousseau N; Derreumaux P; Gilbert G
    Phys Biol; 2005 Nov; 2(4):S101-7. PubMed ID: 16280615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excluded volume entropic effects on protein unfolding times and intermediary stability.
    Chapagain PP; Gerstman BS
    J Chem Phys; 2004 Feb; 120(5):2475-81. PubMed ID: 15268389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desolvation is a likely origin of robust enthalpic barriers to protein folding.
    Liu Z; Chan HS
    J Mol Biol; 2005 Jun; 349(4):872-89. PubMed ID: 15893325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.