These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 15238010)
21. Theoretical 13C chemical shift, 14N, and 2H quadrupole coupling- constant studies of hydrogen bonding in L-alanylglycine dipeptide. Tafazzoli M; Amini SK Magn Reson Chem; 2008 Apr; 46(4):370-6. PubMed ID: 18273875 [TBL] [Abstract][Full Text] [Related]
22. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe. Strohmeier M; Grant DM J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574 [TBL] [Abstract][Full Text] [Related]
23. How Does an Amide-N Chemical Shift Tensor Vary in Peptides? Poon A; Birn J; Ramamoorthy A J Phys Chem B; 2004 Oct; 108(42):16577-16585. PubMed ID: 18449362 [TBL] [Abstract][Full Text] [Related]
24. Investigation of backbone dynamics and local geometry of bio-molecules using calculated NMR chemical shifts and anisotropies. Sternberg U; Witter R J Biomol NMR; 2019 Dec; 73(12):727-741. PubMed ID: 31646420 [TBL] [Abstract][Full Text] [Related]
25. Residue-specific 13C' CSA tensor principal components for ubiquitin: correlation between tensor components and hydrogen bonding. Burton RA; Tjandra N J Am Chem Soc; 2007 Feb; 129(5):1321-6. PubMed ID: 17263416 [TBL] [Abstract][Full Text] [Related]
26. Quantum chemical calculations of amide-15N chemical shift anisotropy tensors for a membrane-bound cytochrome-b5. Pandey MK; Ramamoorthy A J Phys Chem B; 2013 Jan; 117(3):859-67. PubMed ID: 23268659 [TBL] [Abstract][Full Text] [Related]
27. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy. Bryce DL; Grishaev A; Bax A J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787 [TBL] [Abstract][Full Text] [Related]
28. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors. Brouwer DH; Enright GD J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985 [TBL] [Abstract][Full Text] [Related]
29. 15N Chemical shielding in glycyl tripeptides: measurement by solid-state NMR and correlation with X-ray structure. Chekmenev EY; Zhang Q; Waddell KW; Mashuta MS; Wittebort RJ J Am Chem Soc; 2004 Jan; 126(1):379-84. PubMed ID: 14709105 [TBL] [Abstract][Full Text] [Related]
30. Influence of N-H...O and C-H...O hydrogen bonds on the 17O NMR tensors in crystalline uracil: computational study. Ida R; De Clerk M; Wu G J Phys Chem A; 2006 Jan; 110(3):1065-71. PubMed ID: 16420009 [TBL] [Abstract][Full Text] [Related]
31. Solvation and hydrogen bonding in alanine- and glycine-containing dipeptides probed using solution- and solid-state NMR spectroscopy. Bhate MP; Woodard JC; Mehta MA J Am Chem Soc; 2009 Jul; 131(27):9579-89. PubMed ID: 19537718 [TBL] [Abstract][Full Text] [Related]
32. An experimental and theoretical study of the 13C and 31P chemical shielding tensors in solid O-phosphorylated amino acids. Potrzebowski MJ; Assfeld X; Ganicz K; Olejniczak S; Cartier A; Gardiennet C; Tekely P J Am Chem Soc; 2003 Apr; 125(14):4223-32. PubMed ID: 12670244 [TBL] [Abstract][Full Text] [Related]
33. Multidimensional magic angle spinning NMR spectroscopy for site-resolved measurement of proton chemical shift anisotropy in biological solids. Hou G; Paramasivam S; Yan S; Polenova T; Vega AJ J Am Chem Soc; 2013 Jan; 135(4):1358-68. PubMed ID: 23286322 [TBL] [Abstract][Full Text] [Related]
34. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. Hansen AL; Al-Hashimi HM J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143 [TBL] [Abstract][Full Text] [Related]
35. Solid state NMR studies of hydrogen bonding in a citrate synthase inhibitor complex. Gu Z; Drueckhammer DG; Kurz L; Liu K; Martin DP; McDermott A Biochemistry; 1999 Jun; 38(25):8022-31. PubMed ID: 10387046 [TBL] [Abstract][Full Text] [Related]
36. Determination of peptide backbone torsion angles using double-quantum dipolar recoupling solid-state NMR spectroscopy. Mehta MA; Eddy MT; McNeill SA; Mills FD; Long JR J Am Chem Soc; 2008 Feb; 130(7):2202-12. PubMed ID: 18220389 [TBL] [Abstract][Full Text] [Related]
37. Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR. Cisnetti F; Loth K; Pelupessy P; Bodenhausen G Chemphyschem; 2004 Jun; 5(6):807-14. PubMed ID: 15253308 [TBL] [Abstract][Full Text] [Related]
38. Accurate Backbone Kraus J; Gupta R; Lu M; Gronenborn AM; Akke M; Polenova T Chemphyschem; 2020 Jul; 21(13):1436-1443. PubMed ID: 32363727 [TBL] [Abstract][Full Text] [Related]
39. High field 17O solid-state NMR study of alanine tripeptides. Yamauchi K; Okonogi M; Kurosu H; Tansho M; Shimizu T; Gullion T; Asakura T J Magn Reson; 2008 Feb; 190(2):327-32. PubMed ID: 18060815 [TBL] [Abstract][Full Text] [Related]
40. Measurement of 15N chemical shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the application of magic angle sample spinning. Kurita J; Shimahara H; Utsunomiya-Tate N; Tate S J Magn Reson; 2003 Jul; 163(1):163-73. PubMed ID: 12852920 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]