These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 15238255)
21. Membrane binding and perturbation studies of the antimicrobial peptides caerin, citropin, and maculatin. Chia CS; Gong Y; Bowie JH; Zuegg J; Cooper MA Biopolymers; 2011; 96(2):147-57. PubMed ID: 20564028 [TBL] [Abstract][Full Text] [Related]
22. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs. Lee TH; Heng C; Separovic F; Aguilar MI Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995 [TBL] [Abstract][Full Text] [Related]
23. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. Tolokh IS; Vivcharuk V; Tomberli B; Gray CG Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150 [TBL] [Abstract][Full Text] [Related]
24. Lysylated phospholipids stabilize models of bacterial lipid bilayers and protect against antimicrobial peptides. Cox E; Michalak A; Pagentine S; Seaton P; Pokorny A Biochim Biophys Acta; 2014 Sep; 1838(9):2198-204. PubMed ID: 24780374 [TBL] [Abstract][Full Text] [Related]
25. Mode of interaction of hydrophobic amphiphilic alpha-helical peptide/dipalmitoylphosphatidylcholine with phosphatidylglycerol or palmitic acid at the air-water interface. Nakahara H; Lee S; Sugihara G; Shibata O Langmuir; 2006 Jun; 22(13):5792-803. PubMed ID: 16768510 [TBL] [Abstract][Full Text] [Related]
26. Adsorption of the antimicrobial peptide arenicin and its linear derivative to model membranes--a maximum insertion pressure study. Travkova OG; Brezesinski G Chem Phys Lipids; 2013; 167-168():43-50. PubMed ID: 23395912 [TBL] [Abstract][Full Text] [Related]
27. Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. Fernandez DI; Le Brun AP; Lee TH; Bansal P; Aguilar MI; James M; Separovic F Eur Biophys J; 2013 Jan; 42(1):47-59. PubMed ID: 22354331 [TBL] [Abstract][Full Text] [Related]
28. A Langmuir monolayer study of the interaction of E1(145-162) hepatitis G virus peptide with phospholipid membranes. Sánchez-Martín MJ; Haro I; Alsina MA; Busquets MA; Pujol M J Phys Chem B; 2010 Jan; 114(1):448-56. PubMed ID: 20000622 [TBL] [Abstract][Full Text] [Related]
30. Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study. Konovalov O; Myagkov I; Struth B; Lohner K Eur Biophys J; 2002 Oct; 31(6):428-37. PubMed ID: 12355252 [TBL] [Abstract][Full Text] [Related]
31. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A; Dathe M; Blume A Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704 [TBL] [Abstract][Full Text] [Related]
32. Synthesis and antimicrobial activity of truncated fragments and analogs of citropin 1.1: The solution structure of the SDS micelle-bound citropin-like peptides. Sikorska E; Greber K; Rodziewicz-Motowidło S; Szultka L; Lukasiak J; Kamysz W J Struct Biol; 2009 Nov; 168(2):250-8. PubMed ID: 19616100 [TBL] [Abstract][Full Text] [Related]
33. Cardiotoxin II segregates phosphatidylglycerol from mixtures with phosphatidylcholine: (31)P and (2)H NMR spectroscopic evidence. Carbone MA; Macdonald PM Biochemistry; 1996 Mar; 35(11):3368-78. PubMed ID: 8639486 [TBL] [Abstract][Full Text] [Related]
34. Prediction of binding free energy for adsorption of antimicrobial peptide lactoferricin B on a POPC membrane. Vivcharuk V; Tomberli B; Tolokh IS; Gray CG Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031913. PubMed ID: 18517428 [TBL] [Abstract][Full Text] [Related]
35. Effect of phosphatidylcholine bilayer thickness and molecular order on the binding of the antimicrobial peptide maculatin 1.1. Lee TH; Sani MA; Overall S; Separovic F; Aguilar MI Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):300-309. PubMed ID: 29030245 [TBL] [Abstract][Full Text] [Related]
36. The orientation of the antibiotic peptide maculatin 1.1 in DMPG and DMPC lipid bilayers. Support for a pore-forming mechanism. Chia CS; Torres J; Cooper MA; Arkin IT; Bowie JH FEBS Lett; 2002 Feb; 512(1-3):47-51. PubMed ID: 11852050 [TBL] [Abstract][Full Text] [Related]
37. Maculatin 1.1, an anti-microbial peptide from the Australian tree frog, Litoria genimaculata solution structure and biological activity. Chia BC; Carver JA; Mulhern TD; Bowie JH Eur J Biochem; 2000 Apr; 267(7):1894-908. PubMed ID: 10727928 [TBL] [Abstract][Full Text] [Related]
38. Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. Wang Y; Schlamadinger DE; Kim JE; McCammon JA Biochim Biophys Acta; 2012 May; 1818(5):1402-9. PubMed ID: 22387432 [TBL] [Abstract][Full Text] [Related]
39. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study. Rahmanpour A; Ghahremanpour MM; Mehrnejad F; Moghaddam ME J Biomol Struct Dyn; 2013 Dec; 31(12):1393-403. PubMed ID: 23140320 [TBL] [Abstract][Full Text] [Related]
40. Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Beschiaschvili G; Seelig J Biochemistry; 1990 Dec; 29(49):10995-1000. PubMed ID: 2271694 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]