These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 15238255)
41. Effects of a cationic and hydrophobic peptide, KL4, on model lung surfactant lipid monolayers. Ma J; Koppenol S; Yu H; Zografi G Biophys J; 1998 Apr; 74(4):1899-907. PubMed ID: 9545051 [TBL] [Abstract][Full Text] [Related]
42. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Kandasamy SK; Larson RG Chem Phys Lipids; 2004 Nov; 132(1):113-32. PubMed ID: 15530453 [TBL] [Abstract][Full Text] [Related]
43. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
44. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Priyadarshini D; Ivica J; Separovic F; de Planque MRR Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479 [TBL] [Abstract][Full Text] [Related]
45. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
46. Dermaseptin 01 as antimicrobial peptide with rich biotechnological potential: study of peptide interaction with membranes containing Leishmania amazonensis lipid-rich extract and membrane models. Salay LC; Nobre TM; Colhone MC; Zaniquelli ME; Ciancaglini P; Stabeli RG; Leite JR; Zucolotto V J Pept Sci; 2011 Oct; 17(10):700-7. PubMed ID: 21805539 [TBL] [Abstract][Full Text] [Related]
47. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
48. Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Witte K; Olausson BE; Walrant A; Alves ID; Vogel A Biochim Biophys Acta; 2013 Feb; 1828(2):824-33. PubMed ID: 23174351 [TBL] [Abstract][Full Text] [Related]
49. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related]
50. [Study of the interaction of myoglobin with lipid bilayer membranes by potentiodynamic method]. Grigor'ev PA; Postnikova GB; Shekhovtsova EA Biofizika; 2012; 57(1):68-74. PubMed ID: 22567910 [TBL] [Abstract][Full Text] [Related]
51. Interaction of poly(L-arginine) with negatively charged DPPG membranes: calorimetric and monolayer studies. Schwieger C; Blume A Biomacromolecules; 2009 Aug; 10(8):2152-61. PubMed ID: 19603784 [TBL] [Abstract][Full Text] [Related]
52. Spectroscopic and thermodynamic evidence for antimicrobial peptide membrane selectivity. Russell AL; Kennedy AM; Spuches AM; Venugopal D; Bhonsle JB; Hicks RP Chem Phys Lipids; 2010 Jun; 163(6):488-97. PubMed ID: 20362562 [TBL] [Abstract][Full Text] [Related]
53. Influence of oxidized lipids on palmitoyl-oleoyl-phosphatidylcholine organization, contribution of Langmuir monolayers and Langmuir-Blodgett films. Grauby-Heywang C; Moroté F; Mathelié-Guinlet M; Gammoudi I; Faye NR; Cohen-Bouhacina T Chem Phys Lipids; 2016 Oct; 200():74-82. PubMed ID: 27421664 [TBL] [Abstract][Full Text] [Related]
54. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Abbassi F; Galanth C; Amiche M; Saito K; Piesse C; Zargarian L; Hani K; Nicolas P; Lequin O; Ladram A Biochemistry; 2008 Oct; 47(40):10513-25. PubMed ID: 18795798 [TBL] [Abstract][Full Text] [Related]
55. Revealing the Mode of Action of Halictine Antimicrobial Peptides: A Comprehensive Study with Model Membranes. Domingues TM; Perez KR; Riske KA Langmuir; 2020 May; 36(19):5145-5155. PubMed ID: 32336099 [TBL] [Abstract][Full Text] [Related]
56. Influence of the saturation chain and head group charge of phospholipids in the interaction of hepatitis G virus synthetic peptides. Pérez S; Miñones J; Espina M; Alsina MA; Haro I; Mestres C J Phys Chem B; 2005 Oct; 109(42):19970-9. PubMed ID: 16853582 [TBL] [Abstract][Full Text] [Related]
57. The maculatin peptides from the skin glands of the tree frog Litoria genimaculata: a comparison of the structures and antibacterial activities of maculatin 1.1 and caerin 1.1. Rozek T; Waugh RJ; Steinborner ST; Bowie JH; Tyler MJ; Wallace JC J Pept Sci; 1998 Apr; 4(2):111-5. PubMed ID: 9620615 [TBL] [Abstract][Full Text] [Related]
58. Study of orientation and penetration of LAH4 into lipid bilayer membranes: pH and composition dependence. Islami M; Mehrnejad F; Doustdar F; Alimohammadi M; Khadem-Maaref M; Mir-Derikvand M; Taghdir M Chem Biol Drug Des; 2014 Aug; 84(2):242-52. PubMed ID: 24581146 [TBL] [Abstract][Full Text] [Related]
59. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Chen R; Mark AE Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557 [TBL] [Abstract][Full Text] [Related]