BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15238320)

  • 1. Analytical performance criteria: an improved gold amalgam method for measurement of mercury vapor in the workplace.
    Takaya M; Kohyama N
    J Occup Environ Hyg; 2004 Jul; 1(7):D75-9. PubMed ID: 15238320
    [No Abstract]   [Full Text] [Related]  

  • 2. Hair can be a good biomarker of occupational exposure to mercury vapor: simulated experiments and field data analysis.
    Li P; Feng X; Qiu G; Wan Q
    Sci Total Environ; 2011 Sep; 409(20):4484-8. PubMed ID: 21784505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evaluation of exposure to metallic mercury following the measurement of mercury vapor concentration in air of the working zone where acetic aldehyde and chlorine are produced].
    Braszczyńska Z; Marek K; Szaciłło H; Król B; Jedrzejczak A
    Med Pr; 1994; 45(6):487-93. PubMed ID: 7854105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical fiber analyzer for in situ determination of nitrous oxide in workplace environments.
    Silva LI; Rocha-Santos TA; Duarte AC
    J Environ Monit; 2009 Apr; 11(4):852-7. PubMed ID: 19557240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.
    Brown RJ; Kumar Y; Brown AS; Kim KH
    Environ Sci Technol; 2011 Sep; 45(18):7812-8. PubMed ID: 21842877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of mercury vapor analytical methods: comparison of the "double amalgam method" and ISO 17733.
    Takaya M; Joeng JY; Ishihara N; Serita F; Kohyama N
    Ind Health; 2006 Apr; 44(2):287-90. PubMed ID: 16716005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confined spaces and gas detection.
    Smith B
    Occup Health Saf; 2006 Nov; 75(11):70-3. PubMed ID: 17125090
    [No Abstract]   [Full Text] [Related]  

  • 8. Health assessment of artisanal gold miners in Tanzania.
    Bose-O'Reilly S; Drasch G; Beinhoff C; Tesha A; Drasch K; Roider G; Taylor H; Appleton D; Siebert U
    Sci Total Environ; 2010 Jan; 408(4):796-805. PubMed ID: 19945738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Where 'industrial' and 'hygiene' join hands.
    Smith B
    Occup Health Saf; 2007 May; 76(5):60, 62-3, 114. PubMed ID: 17542217
    [No Abstract]   [Full Text] [Related]  

  • 10. Development of one-step hollow fiber supported liquid phase sampling technique for occupational workplace air analysis using high performance liquid chromatography with ultra-violet detector.
    Yan CT; Chien HY
    J Chromatogr A; 2012 Jul; 1246():145-9. PubMed ID: 22673811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of benzene in the workplace and its evolution process, Part II: Present methods and future trends.
    Verma DK; des Tombe K
    Am Ind Hyg Assoc J; 1999; 60(1):48-56. PubMed ID: 10028616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying occupational and nonoccupational exposure to mercury in dental personnel.
    Shirkhanloo H; Fallah Mehrjerdi MA; Hassani H
    Arch Environ Occup Health; 2017 Mar; 72(2):63-69. PubMed ID: 25257992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical performance criteria. Field evaluation of diacetyl sampling and analytical methods.
    Ashley K; McKernan LT; Burroughs E; Deddens J; Pendergrass S; Streicher RP
    J Occup Environ Hyg; 2008 Nov; 5(11):D111-6. PubMed ID: 18726763
    [No Abstract]   [Full Text] [Related]  

  • 14. Wipe sampling as a tool for monitoring aerosol deposition in workplaces.
    Nygren O
    J Environ Monit; 2006 Jan; 8(1):49-52. PubMed ID: 16395459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation and control of mercury vapor exposure in the cell house of chlor alkali plants.
    Dangwal SK
    Environ Res; 1993 Feb; 60(2):254-8. PubMed ID: 8472655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pilot study to determine mercury exposure through vapor and bound to PM10 in a dental school environment.
    Gioda A; Hanke G; Elias-Boneta A; Jiménez-Velez B
    Toxicol Ind Health; 2007 Mar; 23(2):103-13. PubMed ID: 18203562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure assessment to mercury vapor in chloralkali industry.
    Mniszek W
    Environ Monit Assess; 2001 May; 68(2):197-207. PubMed ID: 11411145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of sampling positions when measuring personal exposure to solder fume.
    Simpson AT
    Ann Occup Hyg; 2005 Jul; 49(5):439-42. PubMed ID: 15689396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strategy for assessing workplace exposures to nanomaterials.
    Ramachandran G; Ostraat M; Evans DE; Methner MM; O'Shaughnessy P; D'Arcy J; Geraci CL; Stevenson E; Maynard A; Rickabaugh K
    J Occup Environ Hyg; 2011 Nov; 8(11):673-85. PubMed ID: 22023547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.