These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 15238530)

  • 1. Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster.
    Charlesworth B; Borthwick H; Bartolomé C; Pignatelli P
    Genetics; 2004 Jun; 167(2):815-26. PubMed ID: 15238530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila.
    Haag-Liautard C; Dorris M; Maside X; Macaskill S; Halligan DL; Houle D; Charlesworth B; Keightley PD
    Nature; 2007 Jan; 445(7123):82-5. PubMed ID: 17203060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster.
    García-Dorado A; Monedero JL; López-Fanjul C
    Genetica; 1998; 102-103(1-6):255-65. PubMed ID: 9720284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some evolutionary consequences of deleterious mutations.
    Charlesworth B; Charlesworth D
    Genetica; 1998; 102-103(1-6):3-19. PubMed ID: 9720268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster.
    Fry JD; Keightley PD; Heinsohn SL; Nuzhdin SV
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):574-9. PubMed ID: 9892675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genomic mutation rate for fitness in Drosophila.
    Houle D; Hoffmaster DK; Assimacopoulos S; Charlesworth B
    Nature; 1992 Sep; 359(6390):58-60. PubMed ID: 1522887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness.
    Pasyukova EG; Nuzhdin SV; Morozova TV; Mackay TF
    J Hered; 2004; 95(4):284-90. PubMed ID: 15247307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The build up of mutation-selection- drift balance in laboratory Drosophila populations.
    García-Dorado A; Avila V; Sánchez-Molano E; Manrique A; López-Fanjul C
    Evolution; 2007 Mar; 61(3):653-65. PubMed ID: 17348928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation-selection balance accounting for genetic variation for viability in Drosophila melanogaster as deduced from an inbreeding and artificial selection experiment.
    Rodríguez-Ramilo ST; Pérez-Figueroa A; Fernández B; Fernández J; Caballero A
    J Evol Biol; 2004 May; 17(3):528-41. PubMed ID: 15149396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of E(sev) and Su(Raf) Hsp83 mutants and trans-heterozygotes on bristle trait means and variation in Drosophila melanogaster.
    Milton CC; Batterham P; McKenzie JA; Hoffmann AA
    Genetics; 2005 Sep; 171(1):119-30. PubMed ID: 16183907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish.
    McCune AR; Fuller RC; Aquilina AA; Dawley RM; Fadool JM; Houle D; Travis J; Kondrashov AS
    Science; 2002 Jun; 296(5577):2398-401. PubMed ID: 12089444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimate of the genomic mutation rate deleterious to overall fitness in E. coli.
    Kibota TT; Lynch M
    Nature; 1996 Jun; 381(6584):694-6. PubMed ID: 8649513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexual recombination and the power of natural selection.
    Rice WR; Chippindale AK
    Science; 2001 Oct; 294(5542):555-9. PubMed ID: 11641490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for overdominant selection maintaining X-linked fitness variation in Drosophila melanogaster.
    Connallon T; Knowles LL
    Evolution; 2006 Jul; 60(7):1445-53. PubMed ID: 16929661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Emergence of a recessive lethal mutation in derivatives of an unstable X(Z)-chromosome from Drosophila melanogaster].
    Iurchenko NN; Koriakov DE; Zakharov IK
    Genetika; 1995 Sep; 31(9):1218-24. PubMed ID: 7489885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the genetic parameter determining the efficiency of purging: an estimate for Drosophila egg-to-pupae viability.
    Bersabé D; García-Dorado A
    J Evol Biol; 2013 Feb; 26(2):375-85. PubMed ID: 23199278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection, epistasis, and parent-of-origin effects on deleterious mutations across environments in Drosophila melanogaster.
    Wang AD; Sharp NP; Spencer CC; Tedman-Aucoin K; Agrawal AF
    Am Nat; 2009 Dec; 174(6):863-74. PubMed ID: 19852616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous mutation for life-history traits in Drosophila melanogaster.
    Martorell C; Toro MA; Gallego C
    Genetica; 1998; 102-103(1-6):315-24. PubMed ID: 9720286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper limit of the rate and per generation effects of deleterious genomic mutations.
    Deng HW; Li J; Pfrender ME; Li JL; Deng H
    Genet Res; 2006 Aug; 88(1):57-65. PubMed ID: 17014744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The comparative analysis of the mutational variability and instability of the thi, Bd strains induced by exogenous viral DNA in Drosophila melanogaster].
    Aĭzenzon MG; Stolina MR
    Tsitol Genet; 1990; 24(5):62-6. PubMed ID: 2126404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.