BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15238618)

  • 21. Serial analysis of gene expression: probing transcriptomes for molecular targets.
    Lal A; Sui IM; Riggins GJ
    Curr Opin Mol Ther; 1999 Dec; 1(6):720-6. PubMed ID: 19629869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expressed sequence tag analysis of the response of apple (Malus x domestica'Royal Gala') to low temperature and water deficit.
    Wisniewski M; Bassett C; Norelli J; Macarisin D; Artlip T; Gasic K; Korban S
    Physiol Plant; 2008 Jun; 133(2):298-317. PubMed ID: 18298416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptome analysis of in vivo- and in vitro-produced porcine blastocysts by small amplified RNA-serial analysis of gene expression (SAR-SAGE).
    Miles JR; Blomberg LA; Krisher RL; Everts RE; Sonstegard TS; Van Tassell CP; Zuelke KA
    Mol Reprod Dev; 2008 Jun; 75(6):976-88. PubMed ID: 18357560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serial analysis of gene expression in sinusoidal endothelial cells from normal and injured mouse liver.
    Nonaka H; Sugano S; Miyajima A
    Biochem Biophys Res Commun; 2004 Nov; 324(1):15-24. PubMed ID: 15464976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome annotation using tandem SAGE tags.
    Rivals E; Boureux A; Lejeune M; Ottones F; Pérez OP; Tarhio J; Pierrat F; Ruffle F; Commes T; Marti J
    Nucleic Acids Res; 2007; 35(17):e108. PubMed ID: 17709346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Micro serial analysis of gene expression in normal human choroid and retinal pigment epithelial transcriptomes.
    Kobashi-Hashida M; Ohguro N; Tsujikawa M; Furukawa T; Furukawa A; Hashida N; Tsujikawa K; Nakai K; Tano Y
    Jpn J Ophthalmol; 2005; 49(1):15-22. PubMed ID: 15692769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transforming growth factor-beta1 decreases epithelial sodium channel functionality in renal collecting duct cells via a Smad4-dependent pathway.
    Chang CT; Hung CC; Chen YC; Yen TH; Wu MS; Yang CW; Phillips A; Tian YC
    Nephrol Dial Transplant; 2008 Apr; 23(4):1126-34. PubMed ID: 18045816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renal potassium physiology: integration of the renal response to dietary potassium depletion.
    Kamel KS; Schreiber M; Halperin ML
    Kidney Int; 2018 Jan; 93(1):41-53. PubMed ID: 29102372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early changes in renal distal convoluted tubules and collecting ducts of lithium-treated rats: light microscopy, enzyme histochemistry, and 3H-thymidine autoradiography.
    Jacobsen NO; Olesen OV; Thomsen K; Ottosen PD; Olsen S
    Lab Invest; 1982 Mar; 46(3):298-305. PubMed ID: 7062726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fork in the road of cell differentiation in the kidney tubule.
    Al-Awqati Q; Schwartz GJ
    J Clin Invest; 2004 Jun; 113(11):1528-30. PubMed ID: 15173877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel dephosphorylation-activated conductance in a mouse renal collecting duct cell line.
    Laycock S; Taylor HC; Haigh C; Lee AT; Cooper GJ; Ong AC; Robson L
    Exp Physiol; 2009 Aug; 94(8):914-27. PubMed ID: 19429644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Renal handling of NH4+ in relation to the control of acid-base balance by the kidney.
    Karim Z; Attmane-Elakeb A; Bichara M
    J Nephrol; 2002; 15 Suppl 5():S128-34. PubMed ID: 12027211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal.
    Brauch KM; Dhruv ND; Hanse EA; Andrews MT
    Physiol Genomics; 2005 Oct; 23(2):227-34. PubMed ID: 16076930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of pituitary gene expression by adrenalectomy.
    Nishida Y; Yoshioka M; Ray CA; Bolduc C; Tanaka H; St-Amand J
    Obesity (Silver Spring); 2009 Jan; 17(1):114-20. PubMed ID: 19107126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maturation of renal collecting duct cells in vivo and under perifusion culture.
    Aigner J; Kloth S; Kubitza M; Kashgarian M; Dermietzel R; Minuth WW
    Epithelial Cell Biol; 1994; 3(2):70-8. PubMed ID: 7804397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zonal changes in renal structure and phospholipid metabolism during reversal of potassium depletion nephropathy.
    Ordóñez NG; Toback FG; Aithal HN; Spargo BJ
    Lab Invest; 1977 Jan; 36(1):33-47. PubMed ID: 830994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acid-base transport in the collecting duct.
    Wagner CA; Geibel JP
    J Nephrol; 2002; 15 Suppl 5():S112-27. PubMed ID: 12027210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome of a mouse kidney cortical collecting duct cell line: effects of aldosterone and vasopressin.
    Robert-Nicoud M; Flahaut M; Elalouf JM; Nicod M; Salinas M; Bens M; Doucet A; Wincker P; Artiguenave F; Horisberger JD; Vandewalle A; Rossier BC; Firsov D
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2712-6. PubMed ID: 11226305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphometric analysis of kidney hypertrophy in rats after chronic potassium depletion.
    Elger M; Bankir L; Kriz W
    Am J Physiol; 1992 Apr; 262(4 Pt 2):F656-67. PubMed ID: 1566879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.