BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1523866)

  • 1. The formation of metabolites of mephentermine by microsomal and cytosolic preparations of male Wistar rat livers.
    Mori MA; Kobayashi M; Sakai K; Nakafuku K; Mori Y; Kozuka H
    Xenobiotica; 1992 Apr; 22(4):451-7. PubMed ID: 1523866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of mephentermine and its derivatives by the microsomal fraction from male Wistar rat livers.
    Mori MA; Kobayashi M; Uemura H; Mori Y; Miyahara T; Kozuka H
    Xenobiotica; 1993 Jan; 23(1):11-8. PubMed ID: 8484260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of urinary p-hydroxylated metabolites of mephentermine and phentermine in male Wistar rats.
    Mori MA; Uy-Yu N; Sakai K; Inoue M; Miyahara T; Kozuka H
    Xenobiotica; 1990 Jul; 20(7):653-6. PubMed ID: 2238700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal metabolism of mephentermine and its biliary metabolites in male Wistar rats.
    Mori M; Kobayashi M; Uemura H; Miyahara T; Kozuka H
    Xenobiotica; 1992 Jun; 22(6):701-8. PubMed ID: 1441593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of mephentermine in male guinea pigs and male mice.
    Mori MA; Kobayashi M; Yumoto Y; Nakafuku K; Miyahara T; Kozuka H
    Xenobiotica; 1991 Oct; 21(10):1301-9. PubMed ID: 1796607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urinary and biliary metabolites of mephentermine in male Wistar rats.
    Mori M; Uy N; Sakai K; Inoue M; Miyahara T; Kozuka H
    Xenobiotica; 1989 Mar; 19(3):287-99. PubMed ID: 2665325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species differences in the biotransformation of the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by hepatic microsomes and cytosols from humans, rats, and mice.
    Lin DX; Lang NP; Kadlubar FF
    Drug Metab Dispos; 1995 Apr; 23(4):518-24. PubMed ID: 7600922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 2-chloroethyl nitrosocarbamoylcystamine by rat liver subcellular fractions.
    Godeneche D; Madelmont JC; Moreau MF; Duprat J; Plagne R; Meyniel G
    Drug Metab Dispos; 1986; 14(1):112-7. PubMed ID: 2868853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro metabolism of the antianxiety drug buspirone as a predictor of its metabolism in vivo.
    Jajoo HK; Blair IA; Klunk LJ; Mayol RF
    Xenobiotica; 1990 Aug; 20(8):779-86. PubMed ID: 2219961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p-hydroxylation of amphetamine and phentermine by rat liver microsomes.
    Cho AK; Hodshon BJ; Lindeke B; Jonsson J
    Xenobiotica; 1975 Sep; 5(9):531-8. PubMed ID: 242122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The identification and analysis of the metabolic products of mephentermine.
    Beckett AH; Bélanger PM
    J Pharm Pharmacol; 1975 Dec; 27(12):928-36. PubMed ID: 2665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of lovastatin by rat and human liver microsomes in vitro.
    Greenspan MD; Yudkovitz JB; Alberts AW; Argenbright LS; Arison BH; Smith JL
    Drug Metab Dispos; 1988; 16(5):678-82. PubMed ID: 2906589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatic metabolism of N-hydroxy-N-methyl-4-aminoazobenzene and other N-hydroxy arylamines to reactive sulfuric acid esters.
    Kadlubar FF; Miller JA; Miller EC
    Cancer Res; 1976 Jul; 36(7 PT 1):2350-9. PubMed ID: 819129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal variations in microsomal lipid peroxidation and in glutathione concentration of rat liver.
    Bélanger PM; Desgagné M; Bruguerolle B
    Drug Metab Dispos; 1991; 19(1):241-4. PubMed ID: 1673408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity.
    De Flora S; Morelli A; Basso C; Romano M; Serra D; De Flora A
    Cancer Res; 1985 Jul; 45(7):3188-96. PubMed ID: 4005852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic pathways of flobufen-a new antirheumatic and antiarthritic drug. Interspecies comparison.
    Kvasnicková E; Szotáková B; Wsól V; Trejtnar F; Skálová L; Hais IM; Kuchar M; Poppová M
    Exp Toxicol Pathol; 1999 Jul; 51(4-5):352-6. PubMed ID: 10445396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes.
    Rao DN; Yang MX; Lasker JM; Cederbaum AI
    Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative properties of mitochondrial and microsomal NAD(P)H-dependent lipid peroxidation].
    Osinskaia LF; Chumakov VN
    Biokhimiia; 1980 Feb; 45(2):217-27. PubMed ID: 7388064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of diethyldithiocarbamate to disulfiram by liver microsomes in the presence of NADPH and subsequent loss of microsomal enzyme activity in vitro.
    Masuda Y
    Res Commun Chem Pathol Pharmacol; 1988 Nov; 62(2):251-66. PubMed ID: 2855181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.