BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15239009)

  • 1. Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins.
    Lazzaro A; Corominas M; Martí C; Flors C; Izquierdo LR; Grillo TA; Luis JG; Nonell S
    Photochem Photobiol Sci; 2004 Jul; 3(7):706-10. PubMed ID: 15239009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototoxic phytoalexins. Processes that compete with the photosensitized production of singlet oxygen by 9-phenylphenalenones.
    Flors C; Ogilby PR; Luis JG; Grillo TA; Izquierdo LR; Gentili PL; Bussotti L; Nonell S
    Photochem Photobiol; 2006; 82(1):95-103. PubMed ID: 16029082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant--fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants.
    Grayer RJ; Kokubun T
    Phytochemistry; 2001 Feb; 56(3):253-63. PubMed ID: 11243452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins.
    Flors C; Nonell S
    Acc Chem Res; 2006 May; 39(5):293-300. PubMed ID: 16700528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylphenalenone-type Phytoalexins from Unripe Buñgulan Banana Fruit.
    Kamo T; Kato N; Hirai N; Tsuda M; Fujioka D; Ohigashi H
    Biosci Biotechnol Biochem; 1998; 62(1):95-101. PubMed ID: 27393357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
    Pedras MS; Sarwar MG; Suchy M; Adio AM
    Phytochemistry; 2006 Jul; 67(14):1503-9. PubMed ID: 16806330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triterpene phytoalexins from strawberry fruit.
    Hirai N; Sugie M; Wada M; Lahlou EH; Kamo T; Yoshida R; Tsuda M; Ohigashi H
    Biosci Biotechnol Biochem; 2000 Aug; 64(8):1707-12. PubMed ID: 10993160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of cotton phytoalexins to zoopathogenic fungi.
    Mace ME; Stipanovic RD; Bell AA
    Nat Toxins; 1993; 1(5):294-5. PubMed ID: 8167949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses and antifungal activity.
    Pedras MS; Chumala PB; Suchy M
    Phytochemistry; 2003 Nov; 64(5):949-56. PubMed ID: 14561510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the content and biosynthesis of phytoalexins in banana fruit.
    Kamo T; Hirai N; Tsuda M; Fujioka D; Ohigashi H
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2089-98. PubMed ID: 11129580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution, biosynthesis, and biological activity of phenylphenalenone-type compounds derived from the family of plants, Haemodoraceae.
    Norman EO; Lever J; Brkljača R; Urban S
    Nat Prod Rep; 2019 May; 36(5):753-768. PubMed ID: 30488050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis.
    Borges AA; Borges-Perez A; Fernandez-Falcon M
    J Agric Food Chem; 2003 Aug; 51(18):5326-8. PubMed ID: 12926878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actinidic acid, a new triterpene phytoalexin from unripe kiwi fruit.
    Lahlou EH; Hirai N; Kamo T; Tsuda M; Ohigashi H
    Biosci Biotechnol Biochem; 2001 Feb; 65(2):480-3. PubMed ID: 11302196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of 2-(4-Hydroxyphenyl)naphthalene-1,8-dicarboxylic Anhydride, a Phytoalexin Isolated from Unripe Banana (Musa acuminata).
    Takikawa H; Yoshida M; Mori K
    Biosci Biotechnol Biochem; 1999; 63(10):1834-6. PubMed ID: 26300176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Chemistry of benzoxazinoids produced by plants as phytoalexin].
    Hashimoto Y; Ishizaki T; Shudo K
    Yakugaku Zasshi; 1995 Mar; 115(3):189-200. PubMed ID: 7738777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indole-Containing Phytoalexin-Based Bioisosteres as Antifungals: In Vitro and In Silico Evaluation against
    Angarita-Rodríguez A; Quiroga D; Coy-Barrera E
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31877731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of sesquiterpenes from Celastrus orbiculatus and their antifungal activities against phytopathogenic fungi.
    Wang M; Zhang Q; Ren Q; Kong X; Wang L; Wang H; Xu J; Guo Y
    J Agric Food Chem; 2014 Nov; 62(45):10945-53. PubMed ID: 25331421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylphenalenone type compounds from the leaf fibers of abaca (Musa textilis).
    Del Río JC; Jiménez-Barbero J; Chavez MI; Politi M; Gutiérrez A
    J Agric Food Chem; 2006 Nov; 54(23):8744-8. PubMed ID: 17090116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and antifungal activity of inhibitors of brassilexin detoxification in the plant pathogenic fungus Leptosphaeria maculans.
    Pedras MS; Suchy M
    Bioorg Med Chem; 2006 Feb; 14(3):714-23. PubMed ID: 16202609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.