These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15239049)

  • 41. Misincorporation of amino acid analogues into proteins by biosynthesis.
    Rodgers KJ; Shiozawa N
    Int J Biochem Cell Biol; 2008; 40(8):1452-66. PubMed ID: 18329946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The nucleoside transport proteins, NupC and NupG, from Escherichia coli: specific structural motifs necessary for the binding of ligands.
    Patching SG; Baldwin SA; Baldwin AD; Young JD; Gallagher MP; Henderson PJ; Herbert RB
    Org Biomol Chem; 2005 Feb; 3(3):462-70. PubMed ID: 15678184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family.
    Xie H; Patching SG; Gallagher MP; Litherland GJ; Brough AR; Venter H; Yao SY; Ng AM; Young JD; Herbert RB; Henderson PJ; Baldwin SA
    Mol Membr Biol; 2004; 21(5):323-36. PubMed ID: 15513740
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved heterologous gene expression in Escherichia coli by optimization of the AT-content of codons immediately downstream of the initiation codon.
    Nishikubo T; Nakagawa N; Kuramitsu S; Masui R
    J Biotechnol; 2005 Dec; 120(4):341-6. PubMed ID: 16140408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimization of human D-amino acid oxidase expression in Escherichia coli.
    Romano D; Molla G; Pollegioni L; Marinelli F
    Protein Expr Purif; 2009 Nov; 68(1):72-8. PubMed ID: 19497370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth inhibition of Escherichia coli during heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged glutamyl-tRNA1 Gln.
    Baick JW; Yoon JH; Namgoong S; Söll D; Kim SI; Eom SH; Hong KW
    J Microbiol; 2004 Jun; 42(2):111-6. PubMed ID: 15357304
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular production of Streptomyces lividans acetyl xylan esterase A in Escherichia coli for rapid detection of activity.
    Nisole A; Lussier FX; Morley KL; Shareck F; Kazlauskas RJ; Dupont C; Pelletier JN
    Protein Expr Purif; 2006 Apr; 46(2):274-84. PubMed ID: 16256365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conformation and activity of delta-lysin and its analogs.
    Dhople VM; Nagaraj R
    Peptides; 2005 Feb; 26(2):217-25. PubMed ID: 15629533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Incorporation of Non-Canonical Amino Acids into Proteins by Global Reassignment of Sense Codons.
    Fang KY; Lieblich SA; Tirrell DA
    Methods Mol Biol; 2018; 1798():173-186. PubMed ID: 29868959
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action of a proline analogue, l-thiazolidine-4-carboxylic acid, in Escherichia coli.
    Unger L; DeMoss RD
    J Bacteriol; 1966 Apr; 91(4):1556-63. PubMed ID: 5326116
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of proline analogs into recombinant proteins expressed in Escherichia coli.
    Breunig SL; Tirrell DA
    Methods Enzymol; 2021; 656():545-571. PubMed ID: 34325798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antibiotic free selection for the high level biosynthesis of a silk-elastin-like protein.
    Barroca M; Rodrigues P; Sobral R; Costa MM; Chaves SR; Machado R; Casal M; Collins T
    Sci Rep; 2016 Dec; 6():39329. PubMed ID: 27982135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Incorporation of Aliphatic Proline Residues into Recombinantly Produced Insulin.
    Breunig SL; Quijano JC; Donohue C; Henrickson A; Demeler B; Ku HT; Tirrell DA
    ACS Chem Biol; 2023 Dec; 18(12):2574-2581. PubMed ID: 37960878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Proline production regulation in E. coli K 12].
    Condamine H
    Ann Inst Pasteur (Paris); 1971 Feb; 120(2):126-43. PubMed ID: 4928229
    [No Abstract]   [Full Text] [Related]  

  • 55. Studies of proline metabolism in Escherichia coli. I. The degradation of proline during growth of a proline-requiring auxotroph.
    FRANK L; RYBICKI P
    Arch Biochem Biophys; 1961 Dec; 95():441-9. PubMed ID: 13894629
    [No Abstract]   [Full Text] [Related]  

  • 56. Using synthetic biological parts and microbioreactors to explore the protein expression characteristics of Escherichia coli.
    Gorochowski TE; van den Berg E; Kerkman R; Roubos JA; Bovenberg RA
    ACS Synth Biol; 2014 Mar; 3(3):129-39. PubMed ID: 24299494
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport of proline in Escherichia coli.
    KESSEL D; LUBIN M
    Biochim Biophys Acta; 1962 Feb; 57():32-43. PubMed ID: 14455385
    [No Abstract]   [Full Text] [Related]  

  • 58. Control of proline biosynthesis by proline and proline analogues.
    Tristram H; Thurston CF
    Nature; 1966 Oct; 212(5057):74-5. PubMed ID: 5338192
    [No Abstract]   [Full Text] [Related]  

  • 59. Utilization of proline peptides by a prolineless mutant of Escherichia coli.
    STONE D; HOBERMAN HD
    J Biol Chem; 1953 May; 202(1):203-12. PubMed ID: 13061446
    [No Abstract]   [Full Text] [Related]  

  • 60. Influence of phenylalanine analogues upon bacterial accumulation and incorporation of phenylalanine.
    CONWAY TW; LANSFORD EM; SHIVE W
    J Bacteriol; 1963 Jan; 85(1):141-9. PubMed ID: 14022753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.