BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 15239832)

  • 1. Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes.
    Huang H; Winter EE; Wang H; Weinstock KG; Xing H; Goodstadt L; Stenson PD; Cooper DN; Smith D; Albà MM; Ponting CP; Fechtel K
    Genome Biol; 2004; 5(7):R47. PubMed ID: 15239832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for selection in regulating the evolutionary emergence of disease-causing and other coding CAG repeats in humans and mice.
    Hancock JM; Worthey EA; Santibáñez-Koref MF
    Mol Biol Evol; 2001 Jun; 18(6):1014-23. PubMed ID: 11371590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.
    Dermitzakis ET; Kirkness E; Schwarz S; Birney E; Reymond A; Antonarakis SE
    Genome Res; 2004 May; 14(5):852-9. PubMed ID: 15078857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of amino acid repeats in rodents and humans.
    Albà MM; Guigó R
    Genome Res; 2004 Apr; 14(4):549-54. PubMed ID: 15059995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and evolutionary insights into genes encoding proteins with single amino acid repeats.
    Siwach P; Pophaly SD; Ganesh S
    Mol Biol Evol; 2006 Jul; 23(7):1357-69. PubMed ID: 16618963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios.
    Clark AG; Glanowski S; Nielsen R; Thomas PD; Kejariwal A; Todd MA; Tanenbaum DM; Civello D; Lu F; Murphy B; Ferriera S; Wang G; Zheng X; White TJ; Sninsky JJ; Adams MD; Cargill M
    Science; 2003 Dec; 302(5652):1960-3. PubMed ID: 14671302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats.
    Mularoni L; Veitia RA; Albà MM
    Genomics; 2007 Mar; 89(3):316-25. PubMed ID: 17196365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid and nucleotide recurrence in aligned sequences: synonymous substitution patterns in association with global and local base compositions.
    Nishizawa M; Nishizawa K
    Nucleic Acids Res; 2000 Oct; 28(19):3801-10. PubMed ID: 11000273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of transitions at two-fold redundant sites in mammalian genomes. Transition redundant approach-to-equilibrium (TREx) distance metrics.
    Li T; Chamberlin SG; Caraco MD; Liberles DA; Gaucher EA; Benner SA
    BMC Evol Biol; 2006 Mar; 6():25. PubMed ID: 16545144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary anatomies of positions and types of disease-associated and neutral amino acid mutations in the human genome.
    Subramanian S; Kumar S
    BMC Genomics; 2006 Dec; 7():306. PubMed ID: 17144929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genetics of functional trinucleotide tandem repeats in humans and apes.
    Andrés AM; Soldevila M; Lao O; Volpini V; Saitou N; Jacobs HT; Hayasaka I; Calafell F; Bertranpetit J
    J Mol Evol; 2004 Sep; 59(3):329-39. PubMed ID: 15553088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics on Fgf11 orthologs.
    Katoh Y; Katoh M
    Oncol Rep; 2005 Jul; 14(1):291-4. PubMed ID: 15944803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of evolutionary hotspots in the rodent genomes.
    Yap VB; Pachter L
    Genome Res; 2004 Apr; 14(4):574-9. PubMed ID: 15059998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Satellog: a database for the identification and prioritization of satellite repeats in disease association studies.
    Missirlis PI; Mead CL; Butland SL; Ouellette BF; Devon RS; Leavitt BR; Holt RA
    BMC Bioinformatics; 2005 Jun; 6():145. PubMed ID: 15949044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of GAA trinucleotide repeats in mammals.
    Clark RM; Bhaskar SS; Miyahara M; Dalgliesh GL; Bidichandani SI
    Genomics; 2006 Jan; 87(1):57-67. PubMed ID: 16316739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplicated genes evolve slower than singletons despite the initial rate increase.
    Jordan IK; Wolf YI; Koonin EV
    BMC Evol Biol; 2004 Jul; 4():22. PubMed ID: 15238160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local similarity in evolutionary rates extends over whole chromosomes in human-rodent and mouse-rat comparisons: implications for understanding the mechanistic basis of the male mutation bias.
    Lercher MJ; Williams EJ; Hurst LD
    Mol Biol Evol; 2001 Nov; 18(11):2032-9. PubMed ID: 11606699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of sequence conservation at nucleotide resolution.
    Asthana S; Roytberg M; Stamatoyannopoulos J; Sunyaev S
    PLoS Comput Biol; 2007 Dec; 3(12):e254. PubMed ID: 18166073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary history of 4.5SH RNA.
    Gogolevskaya IK; Koval AP; Kramerov DA
    Mol Biol Evol; 2005 Jul; 22(7):1546-54. PubMed ID: 15814830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: implications for human genetic diseases.
    Stallings RL
    Genomics; 1994 May; 21(1):116-21. PubMed ID: 8088779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.