These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 15240440)
1. Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study. Huang Q; Chen CL; Herrmann A Biophys J; 2004 Jul; 87(1):14-22. PubMed ID: 15240440 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids. Lagüe P; Roux B; Pastor RW J Mol Biol; 2005 Dec; 354(5):1129-41. PubMed ID: 16297931 [TBL] [Abstract][Full Text] [Related]
3. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. Sammalkorpi M; Lazaridis T Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933 [TBL] [Abstract][Full Text] [Related]
4. Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer. Victor BL; Lousa D; Antunes JM; Soares CM J Chem Inf Model; 2015 Apr; 55(4):795-805. PubMed ID: 25826469 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Bernèche S; Nina M; Roux B Biophys J; 1998 Oct; 75(4):1603-18. PubMed ID: 9746504 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulation of HIV-1 fusion domain-membrane complexes: Insight into the N-terminal gp41 fusion mechanism. Promsri S; Ullmann GM; Hannongbua S Biophys Chem; 2012; 170():9-16. PubMed ID: 22892124 [TBL] [Abstract][Full Text] [Related]
7. 13C-13C and (15)N-(13)C correlation spectroscopy of membrane-associated and uniformly labeled human immunodeficiency virus and influenza fusion peptides: amino acid-type assignments and evidence for multiple conformations. Bodner ML; Gabrys CM; Struppe JO; Weliky DP J Chem Phys; 2008 Feb; 128(5):052319. PubMed ID: 18266436 [TBL] [Abstract][Full Text] [Related]
8. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study. Ge M; Freed JH Biophys J; 2009 Jun; 96(12):4925-34. PubMed ID: 19527651 [TBL] [Abstract][Full Text] [Related]
9. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. Chang DK; Cheng SF; Trivedi VD Arch Biochem Biophys; 2001 Dec; 396(1):89-98. PubMed ID: 11716466 [TBL] [Abstract][Full Text] [Related]
10. Design and function of a conformationally restricted analog of the influenza virus fusion peptide. Bertocco A; Formaggio F; Toniolo C; Broxterman QB; Epand RF; Epand RM J Pept Res; 2003 Jul; 62(1):19-26. PubMed ID: 12787447 [TBL] [Abstract][Full Text] [Related]
11. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles. Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950 [TBL] [Abstract][Full Text] [Related]
12. Plasticity of influenza haemagglutinin fusion peptides and their interaction with lipid bilayers. Vaccaro L; Cross KJ; Kleinjung J; Straus SK; Thomas DJ; Wharton SA; Skehel JJ; Fraternali F Biophys J; 2005 Jan; 88(1):25-36. PubMed ID: 15475582 [TBL] [Abstract][Full Text] [Related]
13. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus. Victor BL; Baptista AM; Soares CM J Chem Inf Model; 2012 Nov; 52(11):3001-12. PubMed ID: 23101989 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Bodian DL; Yamasaki RB; Buswell RL; Stearns JF; White JM; Kuntz ID Biochemistry; 1993 Mar; 32(12):2967-78. PubMed ID: 8457561 [TBL] [Abstract][Full Text] [Related]
15. Effect of lipid composition on the "membrane response" induced by a fusion peptide. Volynsky PE; Polyansky AA; Simakov NA; Arseniev AS; Efremov RG Biochemistry; 2005 Nov; 44(44):14626-37. PubMed ID: 16262262 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics and (2)H-NMR study of the influence of an amphiphilic peptide on membrane order and dynamics. Belohorcová K; Qian J; Davis JH Biophys J; 2000 Dec; 79(6):3201-16. PubMed ID: 11106624 [TBL] [Abstract][Full Text] [Related]
17. Closed and Semiclosed Interhelical Structures in Membrane vs Closed and Open Structures in Detergent for the Influenza Virus Hemagglutinin Fusion Peptide and Correlation of Hydrophobic Surface Area with Fusion Catalysis. Ghosh U; Xie L; Jia L; Liang S; Weliky DP J Am Chem Soc; 2015 Jun; 137(24):7548-51. PubMed ID: 26039158 [TBL] [Abstract][Full Text] [Related]
18. Effect of leucine to phenylalanine substitution on the nonpolar face of a class A amphipathic helical peptide on its interaction with lipid: high resolution solution NMR studies of 4F-dimyristoylphosphatidylcholine discoidal complex. Mishra VK; Palgunachari MN; Krishna R; Glushka J; Segrest JP; Anantharamaiah GM J Biol Chem; 2008 Dec; 283(49):34393-402. PubMed ID: 18845546 [TBL] [Abstract][Full Text] [Related]
19. Structural characterizations of fusion peptide analogs of influenza virus hemagglutinin. Implication of the necessity of a helix-hinge-helix motif in fusion activity. Hsu CH; Wu SH; Chang DK; Chen C J Biol Chem; 2002 Jun; 277(25):22725-33. PubMed ID: 11937502 [TBL] [Abstract][Full Text] [Related]
20. Locking the kink in the influenza hemagglutinin fusion domain structure. Lai AL; Tamm LK J Biol Chem; 2007 Aug; 282(33):23946-56. PubMed ID: 17567572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]