These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 15240457)
1. Three roads to islet bursting: emergent oscillations in coupled phantom bursters. Zimliki CL; Mears D; Sherman A Biophys J; 2004 Jul; 87(1):193-206. PubMed ID: 15240457 [TBL] [Abstract][Full Text] [Related]
2. The Ca2+ dynamics of isolated mouse beta-cells and islets: implications for mathematical models. Zhang M; Goforth P; Bertram R; Sherman A; Satin L Biophys J; 2003 May; 84(5):2852-70. PubMed ID: 12719219 [TBL] [Abstract][Full Text] [Related]
3. The phantom burster model for pancreatic beta-cells. Bertram R; Previte J; Sherman A; Kinard TA; Satin LS Biophys J; 2000 Dec; 79(6):2880-92. PubMed ID: 11106596 [TBL] [Abstract][Full Text] [Related]
4. Phantom bursting may underlie electrical bursting in single pancreatic β-cells. Fazli M; Vo T; Bertram R J Theor Biol; 2020 Sep; 501():110346. PubMed ID: 32505826 [TBL] [Abstract][Full Text] [Related]
5. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in beta-cells: considerations in favor of metabolically driven oscillations. Pedersen MG J Theor Biol; 2007 Sep; 248(2):391-400. PubMed ID: 17604056 [TBL] [Abstract][Full Text] [Related]
6. Glucose-dependent and -independent electrical activity in islets of Langerhans of Psammomys obesus, an animal model of nutritionally induced obesity and diabetes. Zimliki CL; Chenault VM; Mears D Gen Comp Endocrinol; 2009 Apr; 161(2):193-201. PubMed ID: 19167400 [TBL] [Abstract][Full Text] [Related]
7. A calcium-based phantom bursting model for pancreatic islets. Bertram R; Sherman A Bull Math Biol; 2004 Sep; 66(5):1313-44. PubMed ID: 15294427 [TBL] [Abstract][Full Text] [Related]
8. Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Tamarina NA; Kuznetsov A; Fridlyand LE; Philipson LH Am J Physiol Endocrinol Metab; 2005 Oct; 289(4):E578-85. PubMed ID: 16014354 [TBL] [Abstract][Full Text] [Related]
9. Contribution of the endoplasmic reticulum to the glucose-induced [Ca(2+)](c) response in mouse pancreatic islets. Arredouani A; Henquin JC; Gilon P Am J Physiol Endocrinol Metab; 2002 May; 282(5):E982-91. PubMed ID: 11934662 [TBL] [Abstract][Full Text] [Related]
10. Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Tsaneva-Atanasova K; Zimliki CL; Bertram R; Sherman A Biophys J; 2006 May; 90(10):3434-46. PubMed ID: 16500973 [TBL] [Abstract][Full Text] [Related]
11. Synchronous glucose-dependent [Ca(2+)](i) oscillations in mouse pancreatic islets of Langerhans recorded in vivo. Fernandez J; Valdeolmillos M FEBS Lett; 2000 Jul; 477(1-2):33-6. PubMed ID: 10899306 [TBL] [Abstract][Full Text] [Related]
12. Regulation of [Ca2+]i oscillations in mouse pancreatic islets by adrenergic agonists. Baltrusch S; Lenzen S Biochem Biophys Res Commun; 2007 Nov; 363(4):1038-43. PubMed ID: 17923116 [TBL] [Abstract][Full Text] [Related]
13. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Bertram R; Satin L; Zhang M; Smolen P; Sherman A Biophys J; 2004 Nov; 87(5):3074-87. PubMed ID: 15347584 [TBL] [Abstract][Full Text] [Related]
14. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans. Stokes CL; Rinzel J Biophys J; 1993 Aug; 65(2):597-607. PubMed ID: 8218890 [TBL] [Abstract][Full Text] [Related]
15. Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans. Valdeolmillos M; Santos RM; Contreras D; Soria B; Rosario LM FEBS Lett; 1989 Dec; 259(1):19-23. PubMed ID: 2689228 [TBL] [Abstract][Full Text] [Related]
16. A phantom bursting mechanism for episodic bursting. Bertram R; Rhoads J; Cimbora WP Bull Math Biol; 2008 Oct; 70(7):1979-93. PubMed ID: 18648884 [TBL] [Abstract][Full Text] [Related]
17. From spikers to bursters via coupling: help from heterogeneity. de Vries G; Sherman A Bull Math Biol; 2001 Mar; 63(2):371-91. PubMed ID: 11276531 [TBL] [Abstract][Full Text] [Related]
18. Inositol trisphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose-stimulated pancreatic beta-cells. Ammälä C; Larsson O; Berggren PO; Bokvist K; Juntti-Berggren L; Kindmark H; Rorsman P Nature; 1991 Oct; 353(6347):849-52. PubMed ID: 1719424 [TBL] [Abstract][Full Text] [Related]
19. Measurement of the entrainment window of islets of Langerhans by microfluidic delivery of a chirped glucose waveform. Dhumpa R; Truong TM; Wang X; Roper MG Integr Biol (Camb); 2015 Sep; 7(9):1061-7. PubMed ID: 26211670 [TBL] [Abstract][Full Text] [Related]
20. Effect of intracellular delivery of energy metabolites on intracellular Ca2+ in mouse islets of Langerhans. Dahlgren GM; Nolkrantz K; Kennedy RT Life Sci; 2005 Oct; 77(23):2986-97. PubMed ID: 16002100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]