BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15240467)

  • 1. Properties of a self-assembled phospholipid membrane supported on lipobeads.
    Ng CC; Cheng YL; Pennefather PS
    Biophys J; 2004 Jul; 87(1):323-31. PubMed ID: 15240467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A lipobead microarray assembled by particle entrapment in a microfluidic obstacle course and used for the display of cell membrane receptors.
    Chen X; Shojaei-Zadeh S; Gilchrist ML; Maldarelli C
    Lab Chip; 2013 Aug; 13(15):3041-60. PubMed ID: 23748734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence microscopic characterization of ionic polymer bead-supported phospholipid bilayer membrane systems.
    Haratake M; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2012 Dec; 100():190-6. PubMed ID: 22766297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipobeads: a hydrogel anchored lipid vesicle system.
    Jin T; Pennefather P; Lee PI
    FEBS Lett; 1996 Nov; 397(1):70-4. PubMed ID: 8941716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipogels: single-lipid-bilayer-enclosed hydrogel spheres.
    Saleem Q; Liu B; Gradinaru CC; Macdonald PM
    Biomacromolecules; 2011 Jun; 12(6):2364-74. PubMed ID: 21553894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and analytical properties of micrometric biosensing lipobeads.
    Ma A; Rosenzweig Z
    Anal Bioanal Chem; 2005 May; 382(1):28-36. PubMed ID: 15900448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of uptake of the fluorescent dye 2-(4-dimethylaminostyryl)-1-ethylpyridinium cation (DMP+) by phospholipid vesicles.
    Sedgwick EG; Bragg PD
    Biochim Biophys Acta; 1993 Feb; 1146(1):113-20. PubMed ID: 8443217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering lipobeads: properties of the hydrogel core and the lipid bilayer shell.
    Buck S; Pennefather PS; Xue HY; Grant J; Cheng YL; Allen CJ
    Biomacromolecules; 2004; 5(6):2230-7. PubMed ID: 15530037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules.
    Terasawa H; Nishimura K; Suzuki H; Matsuura T; Yomo T
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):5942-7. PubMed ID: 22474340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Submicrometric lipobead-based fluorescence sensors for chloride ion measurements in aqueous solution.
    Ma A; Rosenzweig Z
    Anal Chem; 2004 Feb; 76(3):569-75. PubMed ID: 14750848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of radioligand binding to a transmembrane receptor reconstituted into Lipobeads.
    Park PS; Ng CC; Buck S; Wells JW; Cheng YL; Pennefather PS
    FEBS Lett; 2004 Jun; 567(2-3):344-8. PubMed ID: 15178349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized phospholipid capillary electrophoresis for study of drug-membrane interactions and prediction of drug activity.
    Mei J; Xu JR; Xiao YX; Zhang QR; Feng YQ
    Talanta; 2008 Mar; 75(1):104-10. PubMed ID: 18371854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arrays of mobile tethered vesicles on supported lipid bilayers.
    Yoshina-Ishii C; Boxer SG
    J Am Chem Soc; 2003 Apr; 125(13):3696-7. PubMed ID: 12656589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth-profiling with giant vesicle membranes.
    Menger FM; Keiper JS; Caran KL
    J Am Chem Soc; 2002 Oct; 124(40):11842-3. PubMed ID: 12358515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane interaction between Span 80 vesicle and phospholipid vesicle (liposome): Span 80 vesicle can perturb and hemifuse with liposomal membrane.
    Hayashi K; Tatsui T; Shimanouchi T; Umakoshi H
    Colloids Surf B Biointerfaces; 2013 Jun; 106():258-64. PubMed ID: 23434720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperative partition model of nystatin interaction with phospholipid vesicles.
    Coutinho A; Prieto M
    Biophys J; 2003 May; 84(5):3061-78. PubMed ID: 12719237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.