BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 15240471)

  • 1. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior.
    Siegel DP; Kozlov MM
    Biophys J; 2004 Jul; 87(1):366-74. PubMed ID: 15240471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Gaussian curvature elastic energy of intermediates in membrane fusion.
    Siegel DP
    Biophys J; 2008 Dec; 95(11):5200-15. PubMed ID: 18805927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the ratio of the Gaussian curvature and bending elastic moduli of phospholipids from Q(II) phase unit cell dimensions.
    Siegel DP
    Biophys J; 2006 Jul; 91(2):608-18. PubMed ID: 16648171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases.
    Siegel DP; Tenchov BG
    Biophys J; 2008 May; 94(10):3987-95. PubMed ID: 18234828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fusion peptides promote formation of bilayer cubic phases in lipid dispersions. An x-ray diffraction study.
    Tenchov BG; MacDonald RC; Lentz BR
    Biophys J; 2013 Mar; 104(5):1029-37. PubMed ID: 23473485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion.
    Siegel DP; Cherezov V; Greathouse DV; Koeppe RE; Killian JA; Caffrey M
    Biophys J; 2006 Jan; 90(1):200-11. PubMed ID: 16214859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourth-order curvature energy model for the stability of bicontinuous inverted cubic phases in amphiphile-water systems.
    Siegel DP
    Langmuir; 2010 Jun; 26(11):8673-83. PubMed ID: 20349969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetics of non-lamellar phase formation in DOPE-Me: relevance to biomembrane fusion.
    Cherezov V; Siegel DP; Shaw W; Burgess SW; Caffrey M
    J Membr Biol; 2003 Oct; 195(3):165-82. PubMed ID: 14724762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stalk phase formation: effects of dehydration and saddle splay modulus.
    Kozlovsky Y; Efrat A; Siegel DP; Kozlov MM
    Biophys J; 2004 Oct; 87(4):2508-21. PubMed ID: 15454446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction study of the polymorphic behavior of N-methylated dioleoylphosphatidylethanolamine.
    Gruner SM; Tate MW; Kirk GL; So PT; Turner DC; Keane DT; Tilcock CP; Cullis PR
    Biochemistry; 1988 Apr; 27(8):2853-66. PubMed ID: 3401452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New phases of phospholipids and implications to the membrane fusion problem.
    Yang L; Ding L; Huang HW
    Biochemistry; 2003 Jun; 42(22):6631-5. PubMed ID: 12779317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of gramicidin on the structure of phospholipid assemblies.
    Szule JA; Rand RP
    Biophys J; 2003 Sep; 85(3):1702-12. PubMed ID: 12944285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress.
    Rand RP; Fuller NL; Gruner SM; Parsegian VA
    Biochemistry; 1990 Jan; 29(1):76-87. PubMed ID: 2322550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion.
    Siegel DP
    Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases.
    Siegel DP
    Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of influenza hemagglutinin fusion peptide on lamellar/inverted phase transitions in dipalmitoleoylphosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP; Epand RM
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):87-98. PubMed ID: 11018654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.
    Siegel DP
    Biophys J; 1999 Jan; 76(1 Pt 1):291-313. PubMed ID: 9876142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal cation induced cubic phase in poly(ethylene glycol)-functionalized dioleoylphosphatidylethanolamine aqueous dispersions.
    Pisani M; Fino V; Bruni P; Cola ED; Francescangeli O
    J Phys Chem B; 2008 May; 112(17):5276-8. PubMed ID: 18399684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms.
    Siegel DP; Epand RM
    Biophys J; 1997 Dec; 73(6):3089-111. PubMed ID: 9414222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of monolayers and bilayer foam films from lamellar, inverted hexagonal and cubic lipid phases.
    Jordanova A; Lalchev Z; Tenchov B
    Eur Biophys J; 2003 Feb; 31(8):626-32. PubMed ID: 12582822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.