These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15240474)

  • 1. Conformation of peptides in lipid membranes studied by x-ray grazing incidence scattering.
    Spaar A; Münster C; Salditt T
    Biophys J; 2004 Jul; 87(1):396-407. PubMed ID: 15240474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
    Li C; Salditt T
    Biophys J; 2006 Nov; 91(9):3285-300. PubMed ID: 16920839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles.
    Dittmer J; Thøgersen L; Underhaug J; Bertelsen K; Vosegaard T; Pedersen JM; Schiøtt B; Tajkhorshid E; Skrydstrup T; Nielsen NC
    J Phys Chem B; 2009 May; 113(19):6928-37. PubMed ID: 19368399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations.
    Pan J; Tieleman DP; Nagle JF; Kucerka N; Tristram-Nagle S
    Biochim Biophys Acta; 2009 Jun; 1788(6):1387-97. PubMed ID: 19248763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation studies of alamethicin-bilayer interactions.
    Biggin PC; Breed J; Son HS; Sansom MS
    Biophys J; 1997 Feb; 72(2 Pt 1):627-36. PubMed ID: 9017192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alamethicin disrupts the cholesterol distribution in dimyristoyl phosphatidylcholine-cholesterol lipid bilayers.
    Qian S; Rai D; Heller WT
    J Phys Chem B; 2014 Sep; 118(38):11200-8. PubMed ID: 25210841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation and peptide-lipid interactions of alamethicin incorporated in phospholipid membranes: polarized infrared and spin-label EPR spectroscopy.
    Marsh D
    Biochemistry; 2009 Feb; 48(4):729-37. PubMed ID: 19133787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes.
    Kouzayha A; Nasir MN; Buchet R; Wattraint O; Sarazin C; Besson F
    J Phys Chem B; 2009 May; 113(19):7012-9. PubMed ID: 19419221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alamethicin aggregation in lipid membranes.
    Pan J; Tristram-Nagle S; Nagle JF
    J Membr Biol; 2009 Sep; 231(1):11-27. PubMed ID: 19789905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-dependent energetics of alamethicin monomers in the membrane.
    Mottamal M; Lazaridis T
    Biophys Chem; 2006 Jun; 122(1):50-7. PubMed ID: 16542770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of conformational flexibility of alamethicin fragments in aqueous and membranous environment.
    Kothekar V; Mahajan K; Raha K; Gupta D
    J Biomol Struct Dyn; 1996 Dec; 14(3):303-16. PubMed ID: 9016408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering.
    Schneggenburger PE; Beerlink A; Weinhausen B; Salditt T; Diederichsen U
    Eur Biophys J; 2011 Apr; 40(4):417-36. PubMed ID: 21181143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations.
    Tieleman DP; Forrest LR; Sansom MS; Berendsen HJ
    Biochemistry; 1998 Dec; 37(50):17554-61. PubMed ID: 9860871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alamethicin-lipid interaction studied by energy dispersive X-ray diffraction.
    Domenici F; Panichelli D; Castellano AC
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):216-20. PubMed ID: 19135341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy-driven softening of fluid lipid bilayers by alamethicin.
    Pabst G; Danner S; Podgornik R; Katsaras J
    Langmuir; 2007 Nov; 23(23):11705-11. PubMed ID: 17939689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy-Atom Labeled Transmembrane β-Peptides: Synthesis, CD-Spectroscopy, and X-ray Diffraction Studies in Model Lipid Multilayer.
    Rost U; Xu Y; Salditt T; Diederichsen U
    Chemphyschem; 2016 Aug; 17(16):2525-34. PubMed ID: 27123990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetrical ion-channel model inferred from two-dimensional crystallization of a peptide antibiotic.
    Ionov R; El-Abed A; Angelova A; Goldmann M; Peretti P
    Biophys J; 2000 Jun; 78(6):3026-35. PubMed ID: 10827981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.